Advertisement

Aggregation-Diffusion Equations: Dynamics, Asymptotics, and Singular Limits

  • José A. Carrillo
  • Katy Craig
  • Yao YaoEmail author
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

Given a large ensemble of interacting particles, driven by nonlocal interactions and localized repulsion, the mean-field limit leads to a class of nonlocal, nonlinear partial differential equations known as aggregation-diffusion equations. Over the past 15 years, aggregation-diffusion equations have become widespread in biological applications and have also attracted significant mathematical interest, due to their competing forces at different length scales. These competing forces lead to rich dynamics, including symmetrization, stabilization, and metastability, as well as sharp dichotomies separating well-posedness from finite time blow-up. In the present work, we review known analytical results for aggregation-diffusion equations and consider singular limits of these equations, including the slow diffusion limit, which leads to the constrained aggregation equation, and localized aggregation and vanishing diffusion limits, which lead to metastability behavior. We also review the range of numerical methods available for simulating solutions, with special attention devoted to recent advances in deterministic particle methods. We close by applying such a method—the blob method for diffusion—to showcase key properties of the dynamics of aggregation-diffusion equations and related singular limits.

Notes

Acknowledgements

We thank Matias Delgadino, Franca Hoffmann, Jingwei Hu, Francesco Patacchini, Ihsan Topaloglu, and Li Wang for useful discussions. JAC was partially supported by the EPSRC grant number EP/P031587/1. JAC is grateful to the Mittag-Leffler Institute for providing a fruitful working environment during the special semester Mathematical Biology. KC was supported by NSF DMS-1811012. YY was supported by NSF DMS-1715418. The authors acknowledge the American Institute of Mathematics (AIM) for supporting a visit during the early stages of this work. This work used the Extreme Science and Engineering Discovery Environment (XSEDE) Comet at the San Diego Supercomputer Center through allocation DMS180023.

References

  1. 1.
    D. Alexander, I. Kim, and Y. Yao. Quasi-static evolution and congested crowd transport. Nonlinearity, 27(4):823–858, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    L. N. Almeida, F. Bubba, B. Perthame, and C. Pouchol. Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. preprint arXiv:1803.10629, 2018.Google Scholar
  3. 3.
    L. Ambrosio, N. Gigli, and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008.Google Scholar
  4. 4.
    C. Anderson and C. Greengard. On vortex methods. SIAM J. Numer. Anal., 22(3):413–440, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    R. Bailo, J. A. Carrillo, and J. Hu. Fully discrete positivity-preserving and energy-dissipative schemes for nonlinear nonlocal equations with a gradient flow structure. preprint arXiv:, 2018.Google Scholar
  6. 6.
    D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul. Dimensionality of local minimizers of the interaction energy. Arch. Ration. Mech. Anal., 209(3):1055–1088, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    J. T. Beale and A. Majda. Vortex methods. I. Convergence in three dimensions. Math. Comp., 39(159):1–27, 1982.MathSciNetzbMATHGoogle Scholar
  8. 8.
    J. T. Beale and A. Majda. Vortex methods. II. Higher order accuracy in two and three dimensions. Math. Comp., 39(159):29–52, 1982.MathSciNetzbMATHGoogle Scholar
  9. 9.
    J. Bedrossian. Global minimizers for free energies of subcritical aggregation equations with degenerate diffusion. Appl. Math. Lett., 24(11):1927–1932, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    J. Bedrossian. Intermediate asymptotics for critical and supercritical aggregation equations and Patlak–Keller–Segel models. Commun. Math. Sci., 9(4):1143–1161, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    J. Bedrossian and I. C. Kim. Global existence and finite time blow-up for critical Patlak–Keller–Segel models with inhomogeneous diffusion. SIAM J. Math. Anal., 45(3):934–964, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    J. Bedrossian and N. Masmoudi. Existence, uniqueness and Lipschitz dependence for Patlak–Keller–Segel and Navier–Stokes in \(\mathbb {R}^2\) with measure-valued initial data. Arch. Rat. Mech. Anal., 214(3):717–801, 2014.Google Scholar
  13. 13.
    J. Bedrossian and N. Rodríguez. Inhomogeneous Patlak–Keller–Segel models and aggregation equations with nonlinear diffusion in \(\mathbb {R}^d\). Discrete Contin. Dyn. Syst. Ser. B, 19(5):1279–1309, 2014.Google Scholar
  14. 14.
    J. Bedrossian, N. Rodríguez, and A. L. Bertozzi. Local and global well-posedness for aggregation equations and Patlak–Keller–Segel models with degenerate diffusion. Nonlinearity, 24(6):1683–1714, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    N. Bellomo, A. Bellouquid, Y. Tao, and M. Winkler. Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci., 25(9):1663–1763, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    J. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math., 84:375–393, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    J. Benamou, G. Carlier, and M. Laborde. An augmented Lagrangian approach to Wasserstein gradient flows and applications. ESAIM: PROCEEDINGS AND SURVEYS, 54:1–17, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    J.-D. Benamou, G. Carlier, Q. Mérigot, and E. Oudet. Discretization of functionals involving the Monge-Ampère operator. Numer. Math., 134(3):611–636, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    D. Benedetto, E. Caglioti, and M. Pulvirenti. A kinetic equation for granular media. RAIRO Modél. Math. Anal. Numér., 31(5):615–641, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    A. L. Bertozzi, J. A. Carrillo, and T. Laurent. Blow-up in multidimensional aggregation equations with mildly singular interaction kernels. Nonlinearity, 22(3):683–710, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    A. L. Bertozzi, J. B. Garnett, and T. Laurent. Characterization of radially symmetric finite time blowup in multidimensional aggregation equations. SIAM J. Math. Anal., 44(2):651–681, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    A. L. Bertozzi, T. Laurent, and F. Léger. Aggregation and spreading via the Newtonian potential: the dynamics of patch solutions. Math. Models Methods Appl. Sci., 22(suppl. 1):1140005, 39, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    A. L. Bertozzi, T. Laurent, and J. Rosado. L p theory for the multidimensional aggregation equation. Comm. Pure Appl. Math., 64(1):45–83, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    M. Bessemoulin-Chatard and F. Filbet. A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput., 34(5):B559–B583, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    S. Bian and J.-G. Liu. Dynamic and steady states for multi-dimensional Keller–Segel model with diffusion exponent m > 0. Comm. Math. Phy., 323(3):1017–1070, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    A. Blanchet, V. Calvez, and J. A. Carrillo. Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller–Segel model. SIAM J. Numer. Anal., 46(2):691–721, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    A. Blanchet, E. A. Carlen, and J. A. Carrillo. Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller–Segel model. J. Funct. Anal., 262(5):2142–2230, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    A. Blanchet, J. A. Carrillo, and P. Laurençot. Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions. Calc. Var. Partial Differ. Equ., 35(2):133–168, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    A. Blanchet, J. A. Carrillo, and N. Masmoudi. Infinite time aggregation for the critical Patlak–Keller–Segel model in \(\mathbb {R}^2\). Comm. Pure Appl. Math., 61(10):1449–1481, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    A. Blanchet, J. Dolbeault, M. Escobedo, and J. Fernández. Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller–Segel model. J. Math. Anal. Appl., 361:533–542, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    A. Blanchet, J. Dolbeault, and B. Perthame. Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Diff. Eq., 2006:1–33, 2006.MathSciNetzbMATHGoogle Scholar
  32. 32.
    M. Bodnar and J. J. L. Velazquez. An integro-differential equation arising as a limit of individual cell-based models. J. Differential Equations, 222(2):341–380, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    F. Bolley, J. A. Cañizo, and J. A. Carrillo. Stochastic mean-field limit: non-Lipschitz forces and swarming. Math. Models Methods Appl. Sci., 21(11):2179–2210, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    A. Burchard, R. Choksi, and I. Topaloglu. Nonlocal shape optimization via interactions of attractive and repulsive potentials. Indiana Univ. Math. J., 67(1):375–395, 2018.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    M. Burger, M. Di Francesco, and M. Franek. Stationary states of quadratic diffusion equations with long-range attraction. Comm. Math. Sci., 11(3):709–738, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    M. Burger, R. Fetecau, and Y. Huang. Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion. SIAM J. Appl. Dyn. Syst., 13(1):397–424, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    J. A. Cañizo, J. A. Carrillo, and F. S. Patacchini. Existence of compactly supported global minimisers for the interaction energy. Arch. Ration. Mech. Anal., 217(3):1197–1217, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    J. A. Cañizo, J. A. Carrillo, and M. E. Schonbek. Decay rates for a class of diffusive-dominated interaction equations. J. Math. Anal. Appl., 389(1):541–557, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    L. A. Caffarelli and A. Friedman. Asymptotic behavior of solutions of u t = Δu m as m →. Indiana U. Math. J., 36(4):711–728, 1987.Google Scholar
  40. 40.
    V. Calvez and J. A. Carrillo. Volume effects in the Keller–Segel model: energy estimates preventing blow-up. J. Math. Pures Appl., 86(2):155–175, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    V. Calvez, J. A. Carrillo, and F. Hoffmann. Equilibria of homogeneous functionals in the fair-competition regime. Nonlinear Anal., 159:85–128, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    V. Calvez, J. A. Carrillo, and F. Hoffmann. The geometry of diffusing and self-attracting particles in a one-dimensional fair-competition regime. 2186:1–71, 2017.Google Scholar
  43. 43.
    V. Calvez and T. O. Gallouët. Particle approximation of the one dimensional Keller–Segel equation, stability and rigidity of the blow-up. Discrete Contin. Dyn. Syst. Ser. A, 36(3):1175–1208, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    J. F. Campos and J. Dolbeault. Asymptotic estimates for the parabolic-elliptic Keller–Segel model in the plane. J. Math. Anal. Appl., 39(5):806–841, 2014.MathSciNetzbMATHGoogle Scholar
  45. 45.
    M. Campos-Pinto, J. A. Carrillo, F. Charles, and Y.-P. Choi. Convergence of a linearly transformed particle method for aggregation equations. Numerische Mathematik, 139:743–793, 2018.MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    E. A. Carlen and K. Craig. Contraction of the proximal map and generalized convexity of the Moreau-Yosida regularization in the 2-Wasserstein metric. Math. and Mech. of Complex Systems, 1(1):33–65, 2013.zbMATHCrossRefGoogle Scholar
  47. 47.
    E. A. Carlen and A. Figalli. Stability for a GNS inequality and the Log-HLS inequality, with application to the critical mass Keller–Segel equation. Duke Math. J., 162(3):579–625, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    E. A. Carlen and M. Loss. Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on S n. Geom. Funct. Anal., 2(1):90–104, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    G. Carlier, V. Duval, G. Peyré, and B. Schmitzer. Convergence of entropic schemes for optimal transport and gradient flows. SIAM J. Math. Anal., 49(2):1385–1418, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    J. A. Carrillo, D. Castorina, and B. Volzone. Ground States for Diffusion Dominated Free Energies with Logarithmic Interaction. SIAM J. Math. Anal., 47(1):1–25, Jan. 2015.Google Scholar
  51. 51.
    J. A. Carrillo, A. Chertock, and Y. Huang. A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Commun. Comput. Phys., 17(1):233–258, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    J. A. Carrillo, Y.-P. Choi, and M. Hauray. The derivation of swarming models: mean-field limit and Wasserstein distances. In Collective dynamics from bacteria to crowds, volume 553 of CISM Courses and Lect., pages 1–46. Springer, Vienna, 2014.Google Scholar
  53. 53.
    J. A. Carrillo, Y.-P. Choi, and M. Hauray. The derivation of swarming models: mean-field limit and Wasserstein distances. In Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis and Simulation, volume 553 of CISM Courses and Lect., pages 1–46. Springer Vienna, 2014.Google Scholar
  54. 54.
    J. A. Carrillo, Y.-P. Choi, M. Hauray, and S. Salem. Mean-field limit for collective behavior models with sharp sensitivity regions. J. Eur. Math. Soc., 21:121–161, 2019.MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    J. A. Carrillo, K. Craig, and F. S. Patacchini. A blob method for diffusion. arXiv preprint arXiv:1709.09195, 2017.Google Scholar
  56. 56.
    J. A. Carrillo, K. Craig, L. Wang, and C. Wei. Primal dual methods for Wasserstein gradient flows. arXiv preprint arXiv:1901.08081, 2019.Google Scholar
  57. 57.
    J. A. Carrillo, M. G. Delgadino, and A. Mellet. Regularity of local minimizers of the interaction energy via obstacle problems. Comm. Math. Phys., 343(3):747–781, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    J. A. Carrillo, M. Delgadino, and F. S. Patacchini. Existence of ground states for aggregation-diffusion equations. Analysis and applications, 17:393–423, 2019.MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, and D. Slepčev. Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J., 156(2):229–271, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent, and D. Slepčev. Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J., 156(2):229–271, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    J. A. Carrillo, A. Figalli, and F. S. Patacchini. Geometry of minimizers for the interaction energy with mildly repulsive potentials. Ann. IHP, 34:1299–1308, 2017.MathSciNetzbMATHGoogle Scholar
  62. 62.
    J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil. Particle, kinetic, and hydrodynamic models of swarming. Mathematical Modelling of Collective Behavior in Socio-Economic and Life Sciences, pages 297–336, 2010.zbMATHCrossRefGoogle Scholar
  63. 63.
    J. A. Carrillo, S. Hittmeir, B. Volzone, and Y. Yao. Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics. arXiv preprint arXiv:1603.07767, 2016, to appear in Inventiones Mathematicae.Google Scholar
  64. 64.
    J. A. Carrillo, F. Hoffmann, E. Mainini, and B. Volzone. Ground states in the diffusion-dominated regime. Calc. Var. Partial Differ. Equ., 57(5):127, 2018.Google Scholar
  65. 65.
    J. A. Carrillo, Y. Huang, F. S. Patacchini, and G. Wolansky. Numerical study of a particle method for gradient flows. Kinet. Relat. Models, 10(3):613–641, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    J. A. Carrillo, R. J. McCann, and C. Villani. Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam., 19(3):971–1018, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    J. A. Carrillo and J. S. Moll. Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms. SIAM J. Sci. Comput., 31(6):4305–4329, 2009/10.MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    J. A. Carrillo, F. S. Patacchini, P. Sternberg, and G. Wolansky. Convergence of a particle method for diffusive gradient flows in one dimension. SIAM J. Math. Anal., 48(6):3708–3741, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    J. A. Carrillo, H. Ranetbauer, and M.-T. Wolfram. Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms. J. Comput. Phys., 327:186–202, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    J. A. Carrillo and J. Wang. Uniform in time L -estimates for nonlinear aggregation-diffusion equations. arXiv preprint arXiv:1712.09541, 2017.Google Scholar
  71. 71.
    L. Chen, J.-G. Liu, and J. Wang. Multidimensional degenerate Keller–Segel system with critical diffusion exponent 2n/(n+2). SIAM J. Math. Anal., 44(2):1077–1102, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    L. Chen and J. Wang. Exact criterion for global existence and blow up to a degenerate Keller-Segel system. Doc. Math., 19:103–120, 2014.MathSciNetzbMATHGoogle Scholar
  73. 73.
    A. Chertock. A Practical Guide to Deterministic Particle Methods. Available at http://www4.ncsu.edu/~acherto/papers/Chertock_particles.pdf.
  74. 74.
    R. Choksi, C. B. Muratov, and I. Topaloglu. An old problem resurfaces nonlocally: Gamow’s liquid drops inspire today’s research and applications. Notices Amer. Math. Soc., 64(11):1275–1283, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    G.-H. Cottet and P.-A. Raviart. Particle methods for the one-dimensional Vlasov–Poisson equations. SIAM J. Numer. Anal., 21(1):52–76, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    E. Cozzi, G.-M. Gie, and J. P. Kelliher. The aggregation equation with Newtonian potential: the vanishing viscosity limit. J. Math. Anal. Appl., 453(2):841–893, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    K. Craig. The exponential formula for the Wasserstein metric. accepted to ESAIM COCV, preprint at http://arxiv.org/abs/1310.2912.
  78. 78.
    K. Craig. Nonconvex gradient flow in the Wasserstein metric and applications to constrained nonlocal interactions. Proc. Lond. Math. Soc., 114(1):60–102, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    K. Craig and A. L. Bertozzi. A blob method for the aggregation equation. Math. Comp., 85(300):1681–1717, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    K. Craig, I. Kim, and Y. Yao. Congested aggregation via Newtonian interaction. Arch. Rational Mech. Anal., 227(1):1–67, 2018.MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    K. Craig and I. Topaloglu. Convergence of regularized nonlocal interaction energies. SIAM J. Math. Anal., 48(1):34–60, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    K. Craig and I. Topaloglu. Aggregation-diffusion to constrained interaction: Minimizers & gradient flows in the slow diffusion limit. arXiv preprint arXiv:1806.07415, 2018.Google Scholar
  83. 83.
    F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Trans. Automat. Control, 52(5):852–862, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    P. Degond and F.-J. Mustieles. A deterministic approximation of diffusion equations using particles. SIAM J. Sci. Statist. Comput., 11(2):293–310, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    M. Di Francesco and Y. Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. arXiv preprint arXiv:1710.08213, 2017.Google Scholar
  86. 86.
    J. Dolbeault and B. Perthame. Optimal critical mass in the two-dimensional Keller–Segel model in ℝ2. C. R. Math. Acad. Sci. Paris, 339(9):611–616, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    M. R. D’Orsogna, Y.-L. Chuang, A. L. Bertozzi, and L. S. Chayes. Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett., 96(10):104302, 2006.Google Scholar
  88. 88.
    L. Evans, O. Savin, and W. Gangbo. Diffeomorphisms and nonlinear heat flows. SIAM J. Math. Anal., 37(3):737–751, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    J. H. Evers and T. Kolokolnikov. Metastable states for an aggregation model with noise. SIAM J. Appl. Dyn. Syst., 15(4):2213–2226, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    G. E. Fernández and S. Mischler. Uniqueness and long time asymptotic for the Keller-Segel equation: the parabolic-elliptic case. Arch. Ration. Mech. Anal., 220(3):1159–1194, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    R. L. Frank and E. H. Lieb. A ‘liquid-solid’ phase transition in a simple model for swarming, based on the ‘no flat-spots’ theorem for subharmonic functions. Indiana Univ. Math. J., 2018. to appear.Google Scholar
  92. 92.
    T.-E. Ghoul and N. Masmoudi. Stability of infinite time blow up for the Patlak Keller Segel system. preprint arXiv:1610.00456, 2016.Google Scholar
  93. 93.
    O. Gil and F. Quirós. Convergence of the porous media equation to Hele–Shaw. Nonlinear Anal Theory Methods Appl., 44(8):1111–1131, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    O. Gil and F. Quirós. Boundary layer formation in the transition from the porous media equation to a Hele–Shaw flow. Ann. Inst. H. Poincaré Anal. Non Linéaire, 20(1):13–36, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    J. Goodman, T. Y. Hou, and J. Lowengrub. Convergence of the point vortex method for the 2-D Euler equations. Comm. Pure Appl. Math., 43(3):415–430, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    L. Gosse and G. Toscani. Lagrangian numerical approximations to one-dimensional convolution-diffusion equations. SIAM J. Sci. Comput., 28(4):1203–1227, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    M. A. Herrero and J. J. Velázquez. Singularity patterns in a chemotaxis model. Mathematische Annalen, 306(1):583–623, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    D. Horstmann. From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. Jahresber. Deutsch. Math.-Verein., 105(3):103–165, 2003.MathSciNetzbMATHGoogle Scholar
  99. 99.
    H. Huang and J.-G. Liu. Error estimate of a random particle blob method for the Keller–Segel equation. Math. Comp., 86(308):2719–2744.MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    J. D. Hunter. Matplotlib: a 2d graphics environment. Comput. Sci. Eng., 9(3):90–95, 2007.CrossRefGoogle Scholar
  101. 101.
    P.-E. Jabin. A review of the mean field limits for Vlasov equations. Kinet. Relat. Models, 7(4):661–711, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    P.-E. Jabin and Z. Wang. Mean field limit and propagation of chaos for Vlasov systems with bounded forces. J. Funct. Anal., 271(12):3588–3627, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    P.-E. Jabin and Z. Wang. Mean field limit for stochastic particle systems. In Active Particles. Vol. 1. Advances in Theory, Models, and Applications, Model. Simul. Sci. Eng. Technol., pages 379–402. Birkhäuser/Springer, Cham, 2017.Google Scholar
  104. 104.
    W. Jäger and S. Luckhaus. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc., 329(2):819–824, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python, 2001–. Available at http://www.scipy.org/.
  106. 106.
    R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal., 29(1):1–17, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    G. Kaib. Stationary states of an aggregation equation with degenerate diffusion and bounded attractive potential. SIAM J. Math. Anal., 49(1):272–296, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    E. F. Keller and L. A. Segel. Model for chemotaxis. J. Theor. Biol., 30(2):225–234, 1971.zbMATHCrossRefGoogle Scholar
  109. 109.
    I. Kim and N. Požár. Porous medium equation to Hele–Shaw flow with general initial density. Trans. Amer. Math. Soc., 370(2):873–909, 2018.MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    I. Kim, N. Požár, and B. Woodhouse. Singular limit of the porous medium equation with a drift. arXiv preprint arXiv:1708.05842, 2017.Google Scholar
  111. 111.
    I. Kim and Y. Yao. The Patlak-Keller–Segel model and its variations: properties of solutions via maximum principle. SIAM J. Math. Anal., 44(2):568–602, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    T. Kolokolnikov, J. A. Carrillo, A. Bertozzi, R. Fetecau, and M. Lewis. Emergent behaviour in multi-particle systems with non-local interactions [Editorial]. Phys. D, 260:1–4, 2013.MathSciNetCrossRefGoogle Scholar
  113. 113.
    G. Lacombe and S. Mas-Gallic. Presentation and analysis of a diffusion-velocity method. In Flows and Related Numerical Methods (Toulouse, 1998), volume 7 of ESAIM Proc., pages 225–233. Soc. Math. Appl. Indust., Paris, 1999.Google Scholar
  114. 114.
    E. H. Lieb and H.-T. Yau. The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Comm. Math. Phy., 112(1):147–174, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    P.-L. Lions. The concentration-compactness principle in the calculus of variations. the locally compact case, part 1. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(2):109–145, 1984.Google Scholar
  116. 116.
    P.-L. Lions. The concentration-compactness principle in the calculus of variations. the locally compact case, part 2. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(4):223–283, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    P.-L. Lions and S. Mas-Gallic. Une méthode particulaire déterministe pour des équations diffusives non linéaires. C. R. Acad. Sci. Paris Sér. I Math., 332(4):369–376, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    J.-G. Liu, L. Wang, and Z. Zhou. Positivity-preserving and asymptotic preserving method for 2D Keller–Segel equations. Mathematics of Computation, 87:1165–1189, 2018.MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    J.-G. Liu and R. Yang. A random particle blob method for the Keller–Segel equation and convergence analysis. Math. Comp., 86(304):725–745, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    S. Mas-Gallic. The diffusion velocity method: a deterministic way of moving the nodes for solving diffusion equations. Transp. Theory and Stat. Phys., 31(4-6):595–605, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    B. Maury, A. Roudneff-Chupin, and F. Santambrogio. A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci., 20(10):1787–1821, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    B. Maury, A. Roudneff-Chupin, F. Santambrogio, and J. Venel. Handling congestion in crowd motion modeling. Netw. Heterog. Media., 6(3):485–519, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  123. 123.
    A. Mellet, B. Perthame, and F. Quiros. A Hele–Shaw problem for tumor growth. J. Func. Anal., 273(10):3061–3093, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    S. Motsch and E. Tadmor. Heterophilious dynamics enhances consensus. SIAM Rev., 56(4):577–621, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  125. 125.
    K. Oelschläger. Large systems of interacting particles and the porous medium equation. J. Diff. Eq., 88(2):294–346, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    F. Otto. Doubly degenerate diffusion equations as steepest descent, manuscript. 1996.Google Scholar
  127. 127.
    N. Papadakis, G. Peyre, and E. Oudet. Optimal transport with proximal splitting. SIAM. J. Image. Sci., 7(1):212–238, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    C. S. Patlak. Random walk with persistence and external bias. Bull. Math. Biophys., 15(3):311–338, 1953.MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    B. Perthame, F. Quirós, M. Tang, and N. Vauchelet. Derivation of a Hele–Shaw type system from a cell model with active motion. Interfaces Free Bound., 16(4):489–508, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  130. 130.
    B. Perthame, F. Quirós, and J. L. Vázquez. The Hele–Shaw asymptotics for mechanical models of tumor growth. Arch. Ration. Mech. Anal., 212(1):93–127, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    P. Raphaël and R. Schweyer. On the stability of critical chemotactic aggregation. Math. Ann., 359(1-2):267–377, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    G. Russo. Deterministic diffusion of particles. Comm. Pure Appl. Math., 43(6):697–733, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    G. Russo. A particle method for collisional kinetic equations. I. basic theory and one-dimensional results. J. Comput. Phys., 87(2):270–300, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    T. Senba. Type II blowup of solutions to a simplified Keller–Segel system in two dimensional domains. Nonlinear Anal. Theory Methods Appl., 66(8):1817–1839, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  135. 135.
    T. Senba and T. Suzuki. Weak solutions to a parabolic-elliptic system of chemotaxis. J. Funct. Anal., 191(1):17–51, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  136. 136.
    S. Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete Contin. Dyn. Syst., 31(4):1427–1451, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    Y. Sugiyama. The global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis. Differential and Integral Equations, 20(2):133–180, 2007.MathSciNetzbMATHGoogle Scholar
  138. 138.
    Z. Sun, J. A. Carrillo, and C.-W. Shu. A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials, preprint. Preprint, 2017.Google Scholar
  139. 139.
    C. M. Topaz, A. L. Bertozzi, and M. A. Lewis. A nonlocal continuum model for biological aggregation. Bull. Math. Biol., 68(7):1601–1623, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  140. 140.
    S. van der Walt, C. Colbert, and G. Varoquaux. The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng., 13(2):22–30, 2011.CrossRefGoogle Scholar
  141. 141.
    J. L. Vázquez. The porous medium equation. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. Mathematical theory.Google Scholar
  142. 142.
    C. Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003.Google Scholar
  143. 143.
    M. Westdickenberg and J. Wilkening. Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations. M2AN Math. Model. Numer. Anal., 44(1):133–166, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  144. 144.
    Y. Yao. Asymptotic behavior of radial solutions for critical Patlak-Keller-Segel model and an repulsive-attractive aggregation equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 31:81–101, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  145. 145.
    Y. Yao and A. L. Bertozzi. Blow-up dynamics for the aggregation equation with degenerate diffusion. Phys. D, 260:77–89, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  146. 146.
    Y. Zhang. On a class of diffusion-aggregation equations. arXiv preprint arXiv:1801.05543, 2018.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK
  2. 2.University of CaliforniaSanta BarbaraUSA
  3. 3.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations