Skip to main content

Kinetic and Moment Models for Cell Motion in Fiber Structures

  • Chapter
  • First Online:
Active Particles, Volume 2

Abstract

This review focuses on kinetic and macroscopic models for the migration of cells in fiber structures. Typical applications of cell migration models in such geometries are tumor cell invasion into tissue, or tissue-engineering and the movement of fibroblasts on artificial scaffolds during wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dual Core 2.6 GHZ, 8 GB RAM.

  2. 2.

    Provided by Carsten Wolters (Institute for Biomagnetism and Biosignal Analysis, WWU MĂĽnster).

References

  1. Anile, A.M., Pennisi, S., Sammartino, M.: A thermodynamical approach to Eddington factors. Journal of Mathematical Physics 32(2), 544 (1991)

    MathSciNet  MATH  Google Scholar 

  2. B. A. C. Harley H. Kim, M.H.Z.I.V.Y.D.A.L., Gibson, L.J.: Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophysical Journal 29, 4013–4024 (2008)

    Google Scholar 

  3. Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: Complexity and mathematical tools toward the modeling of multicellular growing systems. Mathematical and Computer Modeling 51, 441–451 (2010)

    MATH  Google Scholar 

  4. Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems. Mathematical Models and Methods in Applied Sciences 20(7), 1179–1207 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: On the asymptotic theory from microscopic to macroscopic growing tissue models: an overview with perspectives. Mathematical Models and Methods in Applied Sciences 22(1), 1130001 (27 pages), (2012)

    Google Scholar 

  6. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25(9), 1663–1763 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Borsche, R., Göttlich, S., Klar, A., Schillen, P.: The scalar Keller-Segel model on networks. Math. Models Methods Appl. Sci. 24(2), 221–247 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Borsche, R., Kall, J., Klar, A., Pham, T.: Kinetic and related macroscopic models for chemotaxis on networks. Mathematical Models and Methods in Applied Sciences 26(06), 1219–1242 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Borsche, R., Klar, A.: Kinetic layers and coupling conditions for macroscopic equations on networks. SIAM Sci. Computing 40 (2018)

    Google Scholar 

  10. Borsche, R., Klar, A.: Kinetic layers and coupling conditions for nonlinear scalar equations on networks. Nonlinearity 31, 3512–3541 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Borsche, R., Klar, A., Pham, T.H.: Nonlinear flux-limited models for chemotaxis on networks. Networks & Heterogeneous Media 12(3), 381–401 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Bournaveas, N., Calvez, V.: The one-dimensional Keller-Segel model with fractional diffusion of cells. Nonlinearity 23(4), 923–935 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Bretti, G., Natalini, R., Ribot, M.: A hyperbolic model of chemotaxis on a network: a numerical study. ESAIM: M2AN 48(1), 231–258 (2014)

    Google Scholar 

  14. Brunner, T.A.: Forms of approximate radiation transport. SAND2002-1778, Sandia National Laboratory (July) (2002)

    Google Scholar 

  15. Brunner, T.A., Holloway, J.: One-dimensional Riemann solvers and the maximum entropy closure. Journal of Quantitative Spectroscopy and Radiative Transfer 69(5), 543–566 (2001)

    Google Scholar 

  16. Burger, M., Di Francesco, M., Dolak-Struss, Y.: The Keller-Segel model for chemotaxis with prevention of overcrowding: linear vs. nonlinear diffusion. SIAM J. Math. Anal. 38(4), 1288–1315 (2006). https://dx.doi.org/10.1137/050637923

  17. Camilli, F., Corrias, L.: Parabolic models for chemotaxis on weighted networks. J. Math. Pures Appl. 108, 459–480 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Chalub, F., Markowich, P., Perthame, B., Schmeiser, C.: Kinetic models for chemotaxis and their drift-diffusion limits. Monatsh. Math. 142, 123–141 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Chavanis, P.: Jeans type instability for a chemotactic model of cellular aggregation. Eur. Phys. J. B 52, 433–443 (2006)

    Google Scholar 

  20. Chertock, A., Kurganov, A., Wang, X., Wu, Y.: On a chemotaxis model with saturated chemotactic flux. Kinet. Relat. Models 5(1), 51–95 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Childress, S., Percus, J.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)

    MathSciNet  MATH  Google Scholar 

  22. Colombo, R.M., Garavello, M.: On the Cauchy problem for the p-system at a junction. SIAM J. Math. Anal. 39(5), 1456–1471 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Colombo, R.M., Guerra, G.: On general balance laws with boundary. J. Differential Equations 248(5), 1017–1043 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Coons, S.: Anatomy and growth patterns of diffuse gliomas. In: M. Berger, C. Wilson (eds.) The gliomas, pp. 210–225. W.B. Saunders Company, Philadelphia (1999)

    Google Scholar 

  25. Corbin, G., Hunt, A., Schneider, F., Klar, A., Surulescu, C.: Higher-order models for glioma invasion: from a two-scale description to effective equations for mass density and momentum. M3AS 28, 1771–1800 (2018)

    Google Scholar 

  26. Coulombel, J., Golse, F., Goudon, T.: Diffusion approximation and entropy-based moment closure for kinetic equations. Asymptotic Analysis 45(1), 1–34 (2005)

    MathSciNet  MATH  Google Scholar 

  27. D’Abaco, G., Kaye, A.: Integrins: Molecular determinants of glioma invasion. Journal of Clinical Neuroscience 14, 1041–1048 (2007)

    Google Scholar 

  28. Daumas-Duport, C., Varlet, P., Tucker, M., Beuvon, F., Cervera, P., Chodkiewicz, J.: Oligodendrogliomas. part i: Patterns of growth, histological diagnosis, clinical and imaging correlations: A study of 153 cases. Journal of Neuro-Oncology 34, 37–59 (1997)

    Google Scholar 

  29. Dubroca, B., Klar, A.: Half-moment closure for radiative transfer equations. Journal of Computational Physics 180, 584–596 (2002)

    MATH  Google Scholar 

  30. Engwer, C., Hillen, T., Knappitsch, M., Surulescu, C.: Glioma follow white matter tracts: a multiscale DTI-based model. Journal of Mathematical Biology 71, 551–582 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Engwer, C., Hunt, A., Surulescu, C.: Effective equations for anisotropic glioma spread with proliferation: a multiscale approach. IMA Journal of Mathematical Medicine and Biology 33, 435–459 (2016)

    MATH  Google Scholar 

  32. Engwer, C., Knappitsch, M., Surulescu, C.: A multiscale model for glioma spread including cell-tissue interactions and proliferation. Journal of Engineering Mathematics 13, 443–460 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Fermo, L., Tosin, A.: A fully-discrete-state kinetic theory approach to traffic flow on road networks. Math. Models Methods Appl. Sci. 25(3), 423–461 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Filbet, F., Laurençot, P., Perthame, B.: Derivation of hyperbolic models for chemosensitive movement. J Math Biol. 50(2), 189–207 (2005)

    MathSciNet  MATH  Google Scholar 

  35. Frank, M., Dubroca, B., Klar, A.: Partial moment entropy approximation to radiative heat transfer. Journal of Computational Physics 218(1), 1–18 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Frank, M., Hensel, H., Klar, A.: A fast and accurate moment method for the Fokker-Planck equation and applications to electron radiotherapy. SIAM Journal on Applied Mathematics 67(2), 582–603 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Garrett, C.K., Hauck, C.: A comparison of moment closures for linear kinetic transport equations: the line source benchmark. Transport Theory and Statistical Physics 42, 203–235 (2013)

    MATH  Google Scholar 

  38. Gerstner, E., Chen, P.J., Wen, P., Jain, R., Batchelor, T., Sorensen, G.: Infiltrative patterns of glioblastoma spread detected via diffusion MRI after treatment with cediranib. Neuro-Oncology 12(5), 466–472 (2010)

    Google Scholar 

  39. Giese, A., Kluwe, L., H., M., E., M., Westphal, M.: Migration of human glioma cells on myelin. Neurosurgery 38, 755–764 (1996)

    Google Scholar 

  40. Giese, A., Westphal, M.: Glioma invasion in the central nervous system. Neurosurgery 39, 235–252 (1996)

    Google Scholar 

  41. Gimbutas, Z., Greengard, L.: A fast and stable method for rotating spherical harmonic expansions. Journal of Computational Physics 228(16), 5621–5627 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Guarguaglini, F.R., Natalini, R.: Global smooth solutions for a hyperbolic chemotaxis model on a network. SIAM J. Math. Anal. 47(6), 4652–4671 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Hauck, C.D.: High-order entropy-based closures for linear transport in slab geometry. Communications in Mathematical Sciences 9(1), 187–205 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Herty, M., Moutari, S.: A macro-kinetic hybrid model for traffic flow on road networks. Comput. Methods Appl. Math. 9(3), 238–252 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Hillen, T.: Hyperbolic models for chemosensitive movement. Mathematical Models and Methods in Applied Sciences 12(07), 1007–1034 (2002)

    MathSciNet  MATH  Google Scholar 

  46. Hillen, T., Othmer, H.G.: The diffusion limit of transport equations derived from velocity jump processes. Siam Journal on Applied Mathematics 61, 751–775 (2000)

    MathSciNet  MATH  Google Scholar 

  47. Hillen, T., Painter, K.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58(1-2), 183–217 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415 (1970). https://dx.doi.org/10.1016/0022-5193(70)90092-5

    MathSciNet  MATH  Google Scholar 

  49. Keller, E.F., Segel, L.A.: Model for chemotaxis. Journal of Theoretical Biology 30, 225–234 (1971)

    MATH  Google Scholar 

  50. Kershaw, D.S.: Flux Limiting Nature’s Own Way: A New Method for Numerical Solution of the Transport Equation. Tech. rep., LLNL Report UCRL-78378 (1976)

    Google Scholar 

  51. Klar, A., Schneider, F., Tse, O.: Approximate models for stochastic dynamic systems with velocities on the sphere and associated Fokker–Planck equations. Kinetic and Related Models 7(3), 509–529 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: concepts and applications. Journal of magnetic resonance imaging 13(4), 534–546 (2001)

    Google Scholar 

  53. Levermore, C.D.: Relating Eddington factors to flux limiters. Journal of Quantitative Spectroscopy and Radiative Transfer 31(2), 149–160 (1984)

    Google Scholar 

  54. Levermore, C.D.: Moment closure hierarchies for kinetic theories. Journal of Statistical Physics 83, 1021–1065 (1996)

    MathSciNet  MATH  Google Scholar 

  55. Mandal, B.B., Kundu., S.: Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials 30, 2956–2965 (2009)

    Google Scholar 

  56. Mark, J.C.: The spherical harmonics method, Part {I}. Tech. Rep. MT 92, National Research Council of Canada (1944)

    Google Scholar 

  57. Olbrant, E., Hauck, C.D., Frank, M.: A realizability-preserving discontinuous Galerkin method for the M1 model of radiative transfer. Journal of Computational Physics 231(17), 5612–5639 (2012)

    MathSciNet  MATH  Google Scholar 

  58. Painter, K., Hillen, T.: Mathematical modelling of glioma growth: the use of diffusion tensor imaging (DTI) data to predict the anisotropic pathways of cancer invasion. Journal of Theoretical Biology 323, 25–39 (2013)

    MathSciNet  MATH  Google Scholar 

  59. Pomraning, G.C.: The equations of radiation hydrodynamics. Pergamon Press (1973)

    Google Scholar 

  60. Ritter, J., Klar, A., Schneider, F.: Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions. J. Comp. Applied Math. 306, 300–315 (2016)

    MathSciNet  MATH  Google Scholar 

  61. Schneider, F., Alldredge, G., Frank, M., Klar, A.: Higher Order Mixed-Moment Approximations for the Fokker–Planck Equation in One Space Dimension. SIAM Journal on Applied Mathematics 74(4), 1087–1114 (2014)

    MathSciNet  MATH  Google Scholar 

  62. Schneider, F., Kall, J., Alldredge, G.: A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry. Kinetic and Related Models 9(1), 193–215 (2015)

    MathSciNet  MATH  Google Scholar 

  63. Schneider, F., Kall, J., Roth, A.: First-order quarter- and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic and Related Models 10 (4), 1127–1161 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author is supported by DFG grant 1105/27, by BMBF grant 05M16UKB, GlioMaTh and by the DAAD PhD program MIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Klar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borsche, R., Klar, A., Schneider, F. (2019). Kinetic and Moment Models for Cell Motion in Fiber Structures. In: Bellomo, N., Degond, P., Tadmor, E. (eds) Active Particles, Volume 2. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-20297-2_1

Download citation

Publish with us

Policies and ethics