Skip to main content

Antibacterial, Antioxidant and Raw 264.7 Cell Line Proliferative Effect of 5-[(4-Nitro-Benzylidene)-Amino]-2H-Pyrazol-3-ol

  • Conference paper
  • First Online:
Chemistry for a Clean and Healthy Planet (ICPAC 2018)

Abstract

Pyrazole derivatives are considered important scaffold that possesses cocktails of pharmacological activities. However, no study has assessed their effects on the proliferation of macrophages. In this study, 4-nitrophenyl derivative containing the 1H-pyrazol-3-ol moiety HL1 was synthesised, characterised and assessed for antibacterial as well as cell proliferative effects. HL1 was characterised using an elemental analyser, TGA, XRD, and various spectrophotometric methods. The antibacterial effect of HL1 on three Gram-positive bacterial strains: Enterococcus faecalis, Staphylococcus aureus and Staphylococcus epidermidis and three Gram-negative bacterial strains: Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa were determined using the minimal inhibition assays. The RAW 264.7 macrophage cell line was used to assess the effect of HL1 on mitochondrial activity using the CellTiter® Blue Cell Viability Assay. The thermogram and diffractogram plots registered thermal stability slightly above the melting point of HL1 and a crystal size of 13.01 nm, respectively. The characterisation studies indicated the presence of azomethine moiety at 1701.65 cm−1, \(\delta_{H}\) 9.13 and \(\delta_{C}\) 156.85 ppm in the FT-IR, 1H, and 13C NMR spectra, respectively. The synthesised pyrazole moiety exhibited significant antioxidant activity (IC50 ≤ 0.41 ± 0.02 µM) compared to gallic and ascorbic acid (IC50 ≤ 0.58 ± 0.01 µM) and preserved pharmacological integrity at high temperature but was found not to have any antibacterial effects. The effect of HL1 on the Raw 264.7 cell line intimated a significant increase in the mitochondrial function of the macrophage cells (12.5 μg/ml [127 ± 3%; P < 0.0007] vs. control) indicating an increase in cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karrouchi K, Radi S, Ramli Y et al (2018) Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules 23:134

    Article  PubMed Central  Google Scholar 

  2. Ajay Kumar K, Jayaroopa P (2013) Pyrazoles: synthetic strategies and their pharmaceutical applications—an overview. Int J PharmTech Res 5:1473–1486

    Google Scholar 

  3. Khan MF, Alam MM, Verma G et al (2016) The therapeutic voyage of pyrazole and its analogs: a review. Eur J Med Chem 120:170–201

    Article  CAS  PubMed  Google Scholar 

  4. Hampp C, Hartzema A, Kauf TL (2008) Cost-utility analysis of rimonabant in the treatment of obesity. Value Heal 11:389–399

    Article  Google Scholar 

  5. Luttinger D, Hlasta DJ (1987) Antidepressant agents. Annu Rep Med Chem 22:21–30

    CAS  Google Scholar 

  6. Tsutomu K, Toshitaka N (1978) Effects of 1,3-diphenyl-5-(2-dimethylaminopropionamide)-pyrazole [difenamizole] on a conditioned avoidance response. Neuropharmacology 17:249–256

    Article  Google Scholar 

  7. Baluja S, Chanda S (2016) Synthesis, characterization and antibacterial screening of some Schiff bases derived from pyrazole and 4-amino antipyrine. Rev Colomb Ciencias Químico-Farmacéuticas 45:201

    Article  Google Scholar 

  8. Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 5:514

    Google Scholar 

  9. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200

    Article  CAS  Google Scholar 

  10. Wolfenden BS, Willson RL (1982) Radical-cations as reference chromogens in kinetic studies of ono-electron transfer reactions: pulse radiolysis studies of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). J Chem Soc Perkin Trans 2(2):805–812

    Article  Google Scholar 

  11. Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10:1003–1008

    Article  CAS  PubMed  Google Scholar 

  12. Oyaizu M (1988) Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin layer chromatography. Nippon Shokuhin Kogyo Gakkaishi 35:771–775

    Article  CAS  Google Scholar 

  13. De Rapper S, Kamatou G, Viljoen A, Van Vuuren S (2013) The in vitro antimicrobial activity of Lavandula angustifolia essential oil in combination with other aroma-therapeutic oils. Evid-Based Compl Alt Med 2013:1–10

    Article  Google Scholar 

  14. Akhalwaya S, van Vuuren S, Patel M (2018) An in vitro investigation of indigenous South African medicinal plants used to treat oral infections. J Ethnopharmacol 210:359–371

    Article  CAS  PubMed  Google Scholar 

  15. Rampersad SN (2012) Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 12:12347–12360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Subramaniam P, Nandan N (2011) Effect of xylitol, sodium fluoride and triclosan containing mouth rinse on Streptococcus mutans. Contemp Clin Dent 2:287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Petrus ML, Bouwer RKM, Lafont U et al (2014) Small-molecule azomethines: organic photovoltaics via Schiff base condensation chemistry. J Mater Chem A 2:9474–9477

    Article  CAS  Google Scholar 

  18. Wawer V, Koleva T, Dudev I (1997) 1H and 13C NMR study and AM1 calculations of some azobenzenes and N-benzylideneanilines: effect of substituents on the molecular planarity. J Mol Struct 412:153–159

    Article  Google Scholar 

  19. Malladi S, Isloor AM, Isloor S et al (2013) Synthesis, characterization and antibacterial activity of some new pyrazole based Schiff bases. Arab J Chem 6:335–340

    Article  CAS  Google Scholar 

  20. Soliman EA, El-Kousy SM, Abd-Elbary HM, Abou-zeid AR (2013) Low molecular weight chitosan-based Schiff bases: synthesis, characterization and antibacterial activity. Am J Food Technol 8:17–30

    Article  CAS  Google Scholar 

  21. Ohira T, Yamamoto O (2012) Correlation between antibacterial activity and crystallite size on ceramics. Chem Eng Sci 68:355–361

    Article  CAS  Google Scholar 

  22. Carballo LM, Wolf E (1978) Crystallite size effects during the catalytic oxidation of propylene on Ptγ-Al2O3. J Catal 53:366–373

    Article  CAS  Google Scholar 

  23. Naim MJ, Alam O, Nawaz F et al (2016) Current status of pyrazole and its biological activities. J Pharm Bioallied Sci 8:2–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sahoo J, Kumar Mekap S, Sudhir Kumar P (2015) Synthesis, spectral characterization of some new 3-heteroaryl azo 4-hydroxy coumarin derivatives and their antimicrobial evaluation. J Taibah Univ Sci 9:187–195

    Article  Google Scholar 

  25. Karrouchi K, Chemlal L, Taoufik J et al (2016) Synthèse, activités anti-oxydantes et analgésiques de bases de Schiff dérivées du 4-amino-1,2,4-triazole porteur d’un noyau pyrazole. Ann Pharm Fr 74:431–438

    Article  CAS  PubMed  Google Scholar 

  26. Pasupala P (2017) Synthesis and antioxidant studies of Schiff bases of 2-pyrazole substituted quinoline derivatives. Res J Pharm Biol Chem Sci 8:1415–1420

    Google Scholar 

  27. Siddhuraju P, Mohan PS, Becker K (2002) Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chem 79:61–67

    Article  CAS  Google Scholar 

  28. Shukla S, Mehta A, Bajpai VK, Shukla S (2009) In vitro antioxidant activity and total phenolic content of ethanolic leaf extract of Stevia rebaudiana Bert. Food Chem Toxicol 47:2338–2343

    Article  CAS  PubMed  Google Scholar 

  29. Joyeux M, Lobstein A, Anton R, Mortier F (1995) Comparative antilipoperoxidant, antinecrotic and scavenging properties of terpenes and biflavones from Ginkgo and some flavonoids. Planta Med 61:126–129

    Article  CAS  PubMed  Google Scholar 

  30. Silva FAM, Borges F, Ferreira MA (2001) Effects of phenolic propyl esters on the oxidative stability of refined sunflower oil. J Agric Food Chem 49:3936–3941

    Article  CAS  PubMed  Google Scholar 

  31. Cole ST (2014) Who will develop new antibacterial agents? Philos Trans R Soc B Biol Sci 369:20130430

    Article  Google Scholar 

  32. Malanovic N (2016) Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochim Biophys Acta—Biomembr 1858:936–946

    Article  CAS  Google Scholar 

  33. Antico Arciuch VG, Elguero ME, Poderoso JJ, Carreras MC (2012) Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal 16:1150–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Van Den Bogert C, Spelbrink JN, Dekker HL (1992) Relationship between culture conditions and the dependency on mitochondrial function of mammalian cell proliferation. J Cell Physiol 152:632–638

    Article  PubMed  Google Scholar 

  35. Jenkins SJ, Ruckerl D, Cook PC et al (2011) Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332:1284–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jenkins SJ, Ruckerl D, Thomas GD et al (2013) IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J Exp Med 210:2477–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Amano SU, Cohen JL, Vangala P et al (2014) Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab 19:162–171

    Article  CAS  PubMed  Google Scholar 

  38. Braune J, Weyer U, Hobusch C et al (2017) IL-6 regulates M2 polarization and local proliferation of adipose tissue macrophages in obesity. J Immunol 198:2927–2934

    Article  CAS  PubMed  Google Scholar 

  39. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13

    Google Scholar 

Download references

Acknowledgements

Our appreciation goes to the Institute of Chemical and Biotechnology, Vaal University of Technology, South Africa, for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bamidele J. Okoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Okoli, B.J., Terblanche, U., Ssemakalu, C.C., Mtunzi, F.M., Pillay, M., Modise, J.S. (2019). Antibacterial, Antioxidant and Raw 264.7 Cell Line Proliferative Effect of 5-[(4-Nitro-Benzylidene)-Amino]-2H-Pyrazol-3-ol. In: Ramasami, P., Gupta Bhowon, M., Jhaumeer Laulloo, S., Li Kam Wah, H. (eds) Chemistry for a Clean and Healthy Planet. ICPAC 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-20283-5_21

Download citation

Publish with us

Policies and ethics