Skip to main content

Chromate Ion Adsorption onto Nanostructured Mn–Fe Oxide: Kinetics and Equilibrium Study

  • Conference paper
  • First Online:
Chemistry for a Clean and Healthy Planet (ICPAC 2018)

Abstract

A nanostructured binary metal oxide adsorbent, from chloride salts of manganese and iron, was synthesized by co-precipitation method and applied in sequestration of chromate ions from simulated industrial wastewater. The prepared adsorbent was characterized using X-ray photoelectron spectroscopy (XPS), BET analysis and scanning electron microscopy (SEM) coupled with an energy dispersive X-ray spectrometer (EDS). Batch, kinetic and equilibrium experiments were performed to investigate the adsorption parameters. The pseudo second order kinetic \((R^{2} \ge 0.9965)\) and Langmuir equilibrium isotherm \((R^{2} \ge 0.9994)\) models showed good fits to the experimental adsorption data. Thermodynamic parameters (\(\Delta G^{^\circ }\), \(\Delta H^{^\circ }\) and \(\Delta S^{^\circ }\)) showed that the adsorption is spontaneous, exothermic and decreases randomness at the solid/liquid interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250–251:272–291

    Google Scholar 

  2. Headlam HA, Lay PA (2016) Spectroscopic characterization of genotoxic chromium(V) peptide complexes: oxidation of chromium(III) triglycine, tetraglycine and pentaglycine complexes. J Inorg Biochem 162:227–237

    CAS  Google Scholar 

  3. Kan C-C, Ibe AH, Rivera KKP, Arazo RO, de Luna MDG (2017) Hexavalent chromium removal from aqueous solution by adsorbents synthesized from groundwater treatment residuals. Sustain Environ Res 27:163–171

    Article  CAS  Google Scholar 

  4. Pradhan D, Sukla LB, Sawyer M, Rahman KSM (2017) Recent bioreduction of hexavalent chromium in wastewater treatment: a review. J Ind Eng Chem 55:1–20

    CAS  Google Scholar 

  5. Yadav S, Srivastava V, Banerjee S, Weng CH, Sharma YC (2013) Adsorption characteristics of modified sand for the removal of hexavalent chromium ions from aqueous solutions: kinetic, thermodynamic and equilibrium studies. CATENA 100:120–127

    Article  CAS  Google Scholar 

  6. Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI (2017) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533

    Article  CAS  PubMed  Google Scholar 

  7. US EPA (2011) Ground water and drinking water, Current drinking water standards. EPA 816-F-02

    Google Scholar 

  8. Zhang FS, Itoh H (2006) Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent. Chemosphere 65:125–131

    Article  CAS  PubMed  Google Scholar 

  9. Alinnor IJ (2007) Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel 86:853–857

    Article  CAS  Google Scholar 

  10. Kabdaşli I, Arslan T, Ölmez-Hanci T, Arslan-Alaton I, Tünary O (2009) Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes. J Hazard Mater 165:838–845

    Article  PubMed  Google Scholar 

  11. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  PubMed  Google Scholar 

  12. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377

    Article  CAS  Google Scholar 

  13. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachov AG, Gupta VK (2018) Adsorption of heavy metal on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712

    Article  CAS  PubMed  Google Scholar 

  14. Lingamdinne LP, Koduru JR, Choi YL, Chang YY, Yang YK (2015) Studies on removal of Pb(II) and Cr(III) using graphene oxide base inverse spinel nickel ferrite nanocomposite as solvent. Hydrometallurgy 165:64–72

    Article  Google Scholar 

  15. Vendruscolo F, Da Rocha-Ferreira GL, Filho NRA (2017) Biosorption of hexavalent chromium by microorganisms. Int Biodeterior Biodegradation 119:87–95

    CAS  Google Scholar 

  16. Sherlala AIA, Raman AAA, Bello MM, Asghar A (2018) A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere 193:1004–1017

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Liu D, Lu J, Huang J (2015) Enhanced adsorption of hexavalent chromium from aqueous solutions on facilely synthesized mesoporous iron-zirconium bimetal oxide. Colloids Surf A Physicochem Eng Asp 481:133–142

    Article  CAS  Google Scholar 

  18. Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    Article  CAS  Google Scholar 

  19. Zhang G, Qu J, Liu H, Liu R, Wu R (2007) Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Res 41:1921–1928

    Article  CAS  PubMed  Google Scholar 

  20. Yufanyi DM, Ondoh AM, Foba-Tendo J, Mbadcam KJ (2015) Effect of decomposition temperature on the crystallinity of α-Fe2O3 (hematite) obtained from an iron(III) hexamethylenetetramine precursor. Am J Chem 5:1–9

    Article  CAS  Google Scholar 

  21. Wang Y, Feng X, Villalobos M, Tan W, Liu F (2012) Sorption behaviour of heavy metals on birnessite: relationship with its Mn average oxidation state and implications for types of sorption sites. Chem Geol 292–293:25–34

    Article  Google Scholar 

  22. Weilong W, Xiaobo F (2013) Efficient removal of Cr(VI) with Fe/Mn mixed metal oxide nanocomposites synthesized by a grinding method. J Nanomater 2013:1–8

    Google Scholar 

  23. Krishnan V, Heislbertz S, Natile MM, Glisenti A, Bertagnoli H (2005) Influence of preparation technique and iron doping on the structure and reactivity of mixed Fe–Ti–O nanocomposites. Mater Chem Phys 92:394–402

    Article  CAS  Google Scholar 

  24. Glisenti A (2000) The reactivity of a Fe-Ti-O mixed oxide under different atmospheres: study of the interaction with simple alcohol molecules. J Mol Catal A Chem 153:169–190

    Article  CAS  Google Scholar 

  25. Katsoyiannis IA, Zouboulis AI (2004) Biological treatment of Mn(II) and Fe(II) containing groundwater: kinetic considerations and product characterization. Water Res 38:1922–1932

    Article  CAS  PubMed  Google Scholar 

  26. Han R, Zou W, Zhang Z, Shi J, Yang J (2006) Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand: characterization and kinetic study. J Hazard Mater B137:384–395

    Article  Google Scholar 

  27. Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223–224:1–12

    Article  PubMed  Google Scholar 

  28. Lagergren S (1898) Zurtheorie der sogenannten adsorption gelösterstoffe. Kungl Sven Vetensk Handl 24:1–39

    Google Scholar 

  29. Blanchard G, Maunaye M, Martin G (1984) Removal of heavy metals from water by means of natural zeolites. Water Res 18:1501–1507

    Article  CAS  Google Scholar 

  30. Ho Y-S (1995) Adsorption of heavy metals from waste streams by peat. Ph.D. thesis, The University of Birmingham, Birmingham, UK

    Google Scholar 

  31. Hameed BH, El-Khaiary MI (2008) Malachite green adsorption by rattan sawdust: isotherm kinetic and mechanism modelling. J Hazard Mater 159:574–579

    Article  CAS  PubMed  Google Scholar 

  32. Albadarin AB, Mangwandi C, Al-Muhtaseb AH, Walker GM, Allen SJ, Ahmad NM (2012) Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem Eng J 179:193–202

    Article  CAS  Google Scholar 

  33. Müller G, Janośková K, Bakalár T, Cakl J, Jiránková H (2012) Removal of Zn(II) from aqueous solutions using Lewatit S1468. Desalin Water Treat 37:146–151

    Article  Google Scholar 

  34. Tran HN, You S-J, Chao H-P (2015) Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar. Waste Manag Res 34:129–138

    Article  PubMed  Google Scholar 

  35. Khezami L, Capart R (2005) Removal of chromium(VI) from aqueous solution by activated carbon: kinetic and equilibrium studies. J Hazard Mater B123:223–231

    Article  Google Scholar 

  36. Tran HN, You S-J, Hosseini-Bandegharaei A, Chao H-P (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116

    Article  CAS  PubMed  Google Scholar 

  37. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  38. Freundlich H (1906) Uber die adsorption in losungen. Z Phys Chem 57A:385–470

    Google Scholar 

  39. Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore and solid diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5:212–223

    Article  CAS  Google Scholar 

  40. Weber TW, Chakravorti RK (1974) Pore and solid diffusion models for fixed-bed adsorbers. AlChE J 20:228–238

    Article  CAS  Google Scholar 

  41. Worch E (2012) Adsorption technology in water treatment: fundamentals, processes and modeling. Walter de Gruyter, Berlin

    Book  Google Scholar 

  42. Zhang R, Wang B, Ma H (2010) Studies on chromium(VI) adsorption on sulfonated lignite. Desalination 255:61–66

    Article  CAS  Google Scholar 

  43. Fathima NN, Aravindhan R, Rao JR, Nair BU (2005) Solid waste removes toxic liquid waste: adsorption of chromium (VI) by iron complexed protein waste. Environ Sci Technol 39:2804–2810

    Article  CAS  Google Scholar 

  44. Tang L, Fang Y, Pang Y, Zeng G, Wang J, Zhou Y, Deng Y, Yang G, Cai Y, Chen J (2014) Synergistic adsorption and reduction of hexavalent chromium using highly uniform polyaniline–magnetic mesoporous silica composite. Chem Eng J 254:302–312

    Article  CAS  Google Scholar 

  45. Bhattacharya AK, Naiya TK, Mandal SN, Das SK (2008) Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents. Chem Eng J 137:529–541

    CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by funding from Vaal University of Technology (VUT) and a supervisor research grant from SASOL Limited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustine E. Ofomaja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kupeta, A.J.K., Naidoo, E.B., Ofomaja, A.E. (2019). Chromate Ion Adsorption onto Nanostructured Mn–Fe Oxide: Kinetics and Equilibrium Study. In: Ramasami, P., Gupta Bhowon, M., Jhaumeer Laulloo, S., Li Kam Wah, H. (eds) Chemistry for a Clean and Healthy Planet. ICPAC 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-20283-5_16

Download citation

Publish with us

Policies and ethics