Skip to main content

Diagnostic Methods in Dusty Plasmas

  • Chapter
  • First Online:
Physics of Dusty Plasmas

Part of the book series: Lecture Notes in Physics ((LNP,volume 962))

  • 868 Accesses

Abstract

The dust size, the interparticle distance and the time scales associated with the particle motion are ideally suited to study the dusty plasmas by optical techniques. Here, we like to review different diagnostic methods (video microscopy, scanning microscopy, holography, stereoscopy) to measure the structure and dynamics of two-dimensional and three-dimensional micro-dust systems. Also, approaches to determine the dust size (distribution) and dust density (distribution) in a nano-dust cloud are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CCD: charge-coupled device, CMOS: complementary metal-oxide-semiconductors. In former years, CCD cameras have been used in situations where high-quality image data are needed. However, over the recent years, CMOS cameras, that provide higher data rates, have considerably improved in image quality and nowadays generally outperform CCD cameras.

  2. 2.

    At present, standard USB 3.0 allows a data transfer rate of about 300 MByte/s allowing 300 fps at 1 Megapixel resolution, but also faster techniques are available.

  3. 3.

    The recorded video images should be stored in a lossless data format. The use of lossy formats, such as “jpeg”, is strongly discouraged since they introduce artifacts that interfere with image analysis.

  4. 4.

    Plenoptic (or light-field) cameras distribute the light over some pixels so that the direction of the light rays can be recovered. This allows, as post-processing after recording of the light-field image, to calculate images at different focal planes and thus to retrieve 3D information.

  5. 5.

    The depth of field of a camera is the distance around the focal plane where the particles appear reasonably sharp. Large depths of field usually require small lens apertures.

References

  1. H. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981)

    Google Scholar 

  2. H. Nobach, M. Honkanen, Exp. Fluids 38, 511 (2005)

    Article  Google Scholar 

  3. V. Nosenko, J. Goree, A. Piel, Phys. Plasmas 13, 032106 (2006)

    Article  ADS  Google Scholar 

  4. Y. Ivanov, A. Melzer, Rev. Sci. Instrum. 78, 033506 (2007)

    Article  ADS  Google Scholar 

  5. Y. Feng, J. Goree, B. Liu, Rev. Sci. Instrum. 78, 053704 (2007)

    Article  ADS  Google Scholar 

  6. J.C. Crocker, D.G. Grier, J. Colloid Interface Sci. 179, 298 (1996)

    Article  ADS  Google Scholar 

  7. D. Blair, E. Dufresne, The Matlab Particle Tracking Code Repository. http://site.physics.georgetown.edu/matlab/

  8. R.S. Bucy, B.G. Williams, Lectures on Discrete Time Filtering. Signal Processing and Digital Filtering (Springer, New York, 1994)

    Google Scholar 

  9. A. Savitzky, M.J.E. Golay, Anal. Chem. 36(8), 1627 (1964). http://dx.doi.org/10.1021/ac60214a047

    Article  ADS  Google Scholar 

  10. B. Buttenschön, M. Himpel, A. Melzer, New J. Phys. 13, 023042 (2011)

    Article  ADS  Google Scholar 

  11. M. Raffel, C. Willert, J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer Verlag, Berlin, 1998)

    Book  Google Scholar 

  12. T. Miksch, A. Melzer, Phys. Rev. E 75, 016404 (2007)

    Article  ADS  Google Scholar 

  13. E. Thomas, Phys. Plasmas 8, 329 (2001). http://dx.doi.org/10.1063/1.1328355

    Article  ADS  Google Scholar 

  14. E. Thomas, Phys. Plasmas 9, 17 (2002)

    Article  ADS  Google Scholar 

  15. E. Thomas, J.D. Williams, J. Silver, Phys. Plasmas 11, L37 (2004)

    Article  ADS  Google Scholar 

  16. E. Thomas, J. Williams, Phys. Plasmas 13(5), 055702 (2006). http://dx.doi.org/10.1063/1.2174831

    Article  ADS  Google Scholar 

  17. J.D. Williams, Phys. Plasmas 18, 050702 (2011)

    Article  ADS  Google Scholar 

  18. J. Pieper, J. Goree, R. Quinn, J. Vac. Sci. Technol. A 14, 519 (1996)

    Article  ADS  Google Scholar 

  19. M. Zuzic, A.V. Ivlev, J. Goree, G.E. Morfill, H.M. Thomas, H. Rothermel, U. Konopka, R. Sütterlin, D.D. Goldbeck, Phys. Rev. Lett. 85, 4064 (2000)

    Article  ADS  Google Scholar 

  20. O. Arp, D. Block, A. Piel, A. Melzer, Phys. Rev. Lett. 93, 165004 (2004)

    Article  ADS  Google Scholar 

  21. M. Kroll, D. Block, A. Piel, Phys. Plasmas 15, 063703 (2008)

    Article  ADS  Google Scholar 

  22. S. Käding, A. Melzer, Phys. Plasmas 13, 090701 (2006)

    Article  ADS  Google Scholar 

  23. A. Melzer, M. Himpel, C. Killer, M. Mulsow, J. Plasma Phys. 82, 615820102 (2016). http://dx.doi.org/10.1017/S002237781600009X, http://journals.cambridge.org/article_S002237781600009X

    Article  Google Scholar 

  24. M. Himpel, S. Schütt, W.J. Miloch, A. Melzer, Phys. Plasmas 25(8), 083707 (2018). http://dx.doi.org/10.1063/1.5046049

    Article  ADS  Google Scholar 

  25. B.M. Annaratone, T. Antonova, D.D. Goldbeck, H.M. Thomas, G.E. Morfill, Plasma Phys. Control. Fusion 46, B495 (2004)

    Article  Google Scholar 

  26. P. Hartmann, I. Donko, Z. Donko, Rev. Sci. Instrum. 84, 023501 (2013). http://dx.doi.org/10.1063/1.4789770, http://scitation.aip.org/content/aip/journal/rsi/84/2/10.1063/1.4789770

    Article  ADS  Google Scholar 

  27. D. Block, A. Melzer, in Introduction to Complex Plasmas, ed. by M. Bonitz, N. Horing, P. Ludwig, Springer Series on Atomic, Optical, and Plasma Physics (Springer, New York, 2010), pp. 135–154

    Google Scholar 

  28. D. Samsonov, A. Elsaesser, A. Edwards, H.M. Thomas, G.E. Morfill, Rev. Sci. Instrum. 79, 035102 (2008)

    Article  ADS  Google Scholar 

  29. K.D. Hinsch, Meas. Sci. Technol. 13(7), R61 (2002). http://stacks.iop.org/0957-0233/13/i=7/a=201

    Article  ADS  Google Scholar 

  30. F. Dubois, L. Joannes, J.C. Legros, Appl. Opt. 38(34), 7085 (1999). http://dx.doi.org/10.1364/AO.38.007085. http://ao.osa.org/abstract.cfm?URI=ao-38-34-7085

    Article  ADS  Google Scholar 

  31. G. Indebetouw, W. Zhong, J. Opt. Soc. Am. A 23, 1699 (2006). http://dx.doi.org/10.1364/JOSAA.23.001699. http://josaa.osa.org/abstract.cfm?URI=josaa-23-7-1699

    Article  ADS  Google Scholar 

  32. M. Kroll, J. Schablinski, D. Block, A. Piel, Phys. Plasmas 17, 013702 (2010)

    Article  ADS  Google Scholar 

  33. T.H. Demetrakopoulos, R. Mittra, Appl. Opt. 13(3), 665 (1974). http://dx.doi.org/10.1364/AO.13.000665. http://ao.osa.org/abstract.cfm?URI=ao-13-3-665

    Article  ADS  Google Scholar 

  34. J. Garcia-Sucerquia, W. Xu, S.K. Jericho, P. Klages, M.H. Jericho, H.J. Kreuzer, Appl. Opt. 45, 836 (2006). http://dx.doi.org/10.1364/AO.45.000836. http://ao.osa.org/abstract.cfm?URI=ao-45-5-836

    Article  ADS  Google Scholar 

  35. G. Pan, H. Meng, Appl. Opt. 42, 827 (2003). http://dx.doi.org/10.1364/AO.42.000827. http://ao.osa.org/abstract.cfm?URI=ao-42-5-827

    Article  ADS  Google Scholar 

  36. R.I. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2nd edn. (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  37. T. Antonova, B.M. Annaratone, D.D. Goldbeck, V. Yaroshenko, H.M. Thomas, G.E. Morfill, Phys. Rev. Lett. 96, 115001 (2006)

    Article  ADS  Google Scholar 

  38. M. Mulsow, M. Himpel, A. Melzer, Phys. Plasmas 24(12), 123704 (2017). http://dx.doi.org/10.1063/1.5006841

    Article  ADS  Google Scholar 

  39. M. Himpel, C. Killer, B. Buttenschön, A. Melzer, Phys. Plasmas 19, 123704 (2012)

    Article  ADS  Google Scholar 

  40. M. Himpel, C. Killer, A. Melzer, T. Bockwoldt, K.O. Menzel, A. Piel, Phys. Plasmas 21, 033703 (2014)

    Article  ADS  Google Scholar 

  41. Y. Akhmetbekov, V. Lozhkin, D. Markovich, M. Tokarev, in 9th International Symposium on Particle Image Velocimetry-PIV, vol. 11 (2011), pp. 21–23

    Google Scholar 

  42. B. Wieneke, Exp. Fluids 45, 549 (2008). http://dx.doi.org/10.1007/s00348-008-0521-5

    Article  Google Scholar 

  43. D. Schanz, S. Gesemann, A. Schröder, Exp. Fluids 57, 70 (2016). http://dx.doi.org/10.1007/s00348-016-2157-1.

    Article  Google Scholar 

  44. J.Y. Bouguet, Camera calibration toolbox for matlab (2008). http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

  45. C. Wengert, M. Reeff, P.C. Cattin, G. Székely, in Bildverarbeitung für die Medizin (Springer-Verlag, Berlin, 2006), pp. 419–23. ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00381.pdf

  46. M. Himpel. Camera calibration and 3d particle tracking toolbox for matlab (2016). https://physik.uni-greifswald.de/ag-melzer/forschung/stereo-toolbox

  47. M. Himpel, B. Buttenschön, A. Melzer, Rev. Sci. Instrum. 82, 053706 (2011)

    Article  ADS  Google Scholar 

  48. Z. Zhang, Int. J. Comput. Vis. 27, 161 (1998). http://dx.doi.org/10.1023/A%3A1007941100561

    Article  Google Scholar 

  49. R.I. Hartley, P. Sturm, Comput. Vis. Image Underst. 68, 146 (1997). http://dx.doi.org/10.1006/cviu.1997.0547. http://www.sciencedirect.com/science/article/pii/S1077314297905476

    Article  Google Scholar 

  50. T. Bockwoldt, O. Arp, K.O. Menzel, A. Piel, Phys. Plasmas (1994–Present) 21, 103703 (2014)

    Google Scholar 

  51. F. Greiner, A. Melzer, B. Tadsen, S. Groth, C. Killer, F. Kirchschlager, F. Wieben, I. Pilch, H. Krüger, D. Block, A. Piel, S. Wolf, Eur. Phys. J. D 72, 81 (2018). https://doi.org/10.1140/epjd/e2017-80400-7

    Article  ADS  Google Scholar 

  52. F. Kirchschlager, S. Wolf, F. Greiner, S. Groth, A. Labdon, Appl. Phys. Lett. 110(17), 173106 (2017). http://dx.doi.org/10.1063/1.4982645

    Article  ADS  Google Scholar 

  53. F. Greiner, J. Carstensen, N. Köhler, I. Pilch, H. Ketelsen, S. Knist, A. Piel, Plasma Sources Sci. Technol. 21(6), 065005 (2012). http://stacks.iop.org/0963-0252/21/i=6/a=065005

    Article  ADS  Google Scholar 

  54. W.W. Stoffels, E. Stoffels, G. Swinkels, M. Boufnichel, G. Kroesen, Phys. Rev. E 59, 2302 (1999)

    Article  ADS  Google Scholar 

  55. C. Killer, M. Mulsow, A. Melzer, Plasma Sources Sci. Technol. 24, 025029 (2015). http://stacks.iop.org/0963-0252/24/i=2/a=025029

    Article  ADS  Google Scholar 

  56. H. Krüger, C. Killer, S. Schütt, A. Melzer, Plasma Sources Sci. Technol. 27, 025004 (2018). http://iopscience.iop.org/article/10.1088/1361-6595/aaa7d5

    Article  ADS  Google Scholar 

  57. C. Killer, M. Himpel, A. Melzer, Rev. Sci. Instrum. 85, 103711 (2014)

    Article  ADS  Google Scholar 

  58. G. Pretzler, Z. Naturforsch. 46a, 639 (1991)

    Google Scholar 

  59. C. Killer, F. Greiner, S. Groth, B. Tadsen, A. Melzer, Plasma Sources Sci. Technol. 25, 055004 (2016). http://dx.doi.org/10.1088/0963-0252/25/5/055004. http://stacks.iop.org/0963-0252/25/i=5/a=055004

    Article  ADS  Google Scholar 

  60. C. Killer. Abel inversion algorithm, matlab central file exchange (2013). https://www.mathworks.com/matlabcentral/fileexchange/43639-abel-inversion-algorithm

  61. A. Melzer, M. Himpel, H. Krüger, S. Schütt, Plasma Phys. Controlled Fusion 61, 014029 (2018). https://doi.org/10.1088/1361-6587/aad652

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melzer, A. (2019). Diagnostic Methods in Dusty Plasmas. In: Physics of Dusty Plasmas. Lecture Notes in Physics, vol 962. Springer, Cham. https://doi.org/10.1007/978-3-030-20260-6_10

Download citation

Publish with us

Policies and ethics