Skip to main content

Imbalanced Datasets Resampling Through Self Organizing Maps and Genetic Algorithms

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1000))

  • 1954 Accesses

Abstract

The paper presents a novel approach for the resampling of imbalanced datasets aiming at the improvement of classifiers performance. The method exploits two self–organizing–maps for the determinations of the clusters of majority and minority data. Clusters centroids are used to select the samples whose under–sampling or over–sampling is more convenient while the optimal resampling rates are determined through a genetic algorithm that maximizes the classifier performance. The algorithm is tested on several datasets coming from both the UCI repository and real industrial applications and compared to other widely used resampling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. Newsl. 6(1), 20–29 (2004)

    Article  Google Scholar 

  2. Borselli, A., Colla, V., Vannucci, M., Veroli, M.: A fuzzy inference system applied to defect detection in flat steel production. In: 2010 IEEE World Congress on Computational Intelligence, WCCI 2010 (2010)

    Google Scholar 

  3. Cateni, S., Colla, V., Vannucci, M.: A genetic algorithm-based approach for selecting input variables and setting relevant network parameters of a som-based classifier. Int. J. Simul.: Syst. Sci. Technol. 12(2), 30–37 (2011)

    Google Scholar 

  4. Cateni, S., Colla, V., Vannucci, M.: A method for resampling imbalanced datasets in binary classification tasks for real-world problems. Neurocomputing 135, 32–41 (2014)

    Article  Google Scholar 

  5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Int. Res. 16(1), 321–357 (2002)

    MATH  Google Scholar 

  6. De Amorim, R.C., Hennig, C.: Recovering the number of clusters in data sets with noise features using feature rescaling factors. Inf. Sci. 324, 126–145 (2015)

    Article  MathSciNet  Google Scholar 

  7. Elkan, C.: The foundations of cost-sensitive learning. In: International Joint Conference on Artificial Intelligence, vol. 17, pp. 973–978. Lawrence Erlbaum Associates Ltd (2001)

    Google Scholar 

  8. Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 20(1), 18–36 (2004)

    Article  MathSciNet  Google Scholar 

  9. Fan, W., Stolfo, S.J., Zhang, J., Chan, P.K.: AdaCost: misclassification cost-sensitive boosting. In: Proceedings of the Sixteenth International Conference on Machine Learning, ICML 1999, pp. 97–105. Morgan Kaufmann Publishers Inc., San Francisco (1999)

    Google Scholar 

  10. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  11. Japkowicz, N.: The class imbalance problem: significance and strategies. In: Proceedings of the 2000 International Conference on Artificial Intelligence (ICAI), pp. 111–117 (2000)

    Google Scholar 

  12. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: One-sided selection. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 179–186. Morgan Kaufmann (1997)

    Google Scholar 

  13. Laurikkala, J.: Improving identification of difficult small classes by balancing class distribution. In: Quaglini, S., Barahona, P., Andreassen, S. (eds.) AIME 2001. LNCS (LNAI), vol. 2101, pp. 63–66. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48229-6_9

    Chapter  Google Scholar 

  14. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  15. Ling, C.X., Yang, Q., Wang, J., Zhang, S.: Decision trees with minimal costs. In: Proceedings of the Twenty-first International Conference on Machine Learning, ICML 2004, p. 69. ACM, New York (2004)

    Google Scholar 

  16. Soler, V., Prim, M.: Rectangular basis functions applied to imbalanced datasets. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 511–519. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74690-4_52

    Chapter  Google Scholar 

  17. Vannucci, M., Colla, V.: Novel classification method for sensitive problems and uneven datasets based on neural networks and fuzzy logic. Appl. Soft Comput. J. 11(2), 2383–2390 (2011)

    Article  Google Scholar 

  18. Vannucci, M., Colla, V., Nastasi, G., Matarese, N.: Detection of rare events within industrial datasets by means of data resampling and specific algorithms. Int. J. Simul.: Syst. Sci. Technol. 11(3), 1–11 (2010)

    Google Scholar 

  19. Vannucci, M., Colla, V., Sgarbi, M., Toscanelli, O.: Thresholded neural networks for sensitive industrial classification tasks. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 1320–1327. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02478-8_165

    Chapter  Google Scholar 

  20. Vannucci, M., Colla, V.: Genetic algorithms based resampling for the classification of unbalanced datasets. Smart Innov. Syst. Technol. 73, 23–32 (2018)

    Article  Google Scholar 

  21. Vannucci, M., Colla, V.: Self organizing maps based undersampling for the classification of unbalanced datasets. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–6, July 2018

    Google Scholar 

  22. Vannucci, M., Colla, V.: Classification of unbalanced datasets and detection of rare events in industry: issues and solutions. In: Jayne, C., Iliadis, L. (eds.) EANN 2016. CCIS, vol. 629, pp. 337–351. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44188-7_26

    Chapter  Google Scholar 

  23. Wu, Y., Shen, L., Zhang, S.: Fuzzy multiclass support vector machines for unbalanced data. In: 2017 29th Chinese Control And Decision Conference (CCDC), pp. 2227–2231, May 2017

    Google Scholar 

  24. Yuan, Z., Bao, D., Chen, Z., Liu, M.: Integrated transfer learning algorithm using multi-source tradaboost for unbalanced samples classification. In: 2017 International Conference on Computing Intelligence and Information System (CIIS), pp. 188–195, April 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Vannucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vannucci, M., Colla, V. (2019). Imbalanced Datasets Resampling Through Self Organizing Maps and Genetic Algorithms. In: Macintyre, J., Iliadis, L., Maglogiannis, I., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2019. Communications in Computer and Information Science, vol 1000. Springer, Cham. https://doi.org/10.1007/978-3-030-20257-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20257-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20256-9

  • Online ISBN: 978-3-030-20257-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics