Skip to main content

Imaging Time-Series for NILM

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2019)

Abstract

Non Intrusive Load Monitoring is the field that encompasses energy disaggregation and appliance detection. In recent years, Deep Neural Networks have improved the classification performance, using the standard data representation that most datasets provide; that being low-frequency or high-frequency data. In this paper, we explore the NILM problem from the scope of transfer learning. We propose a way of changing the feature space with the use of an image representation of the low-frequency data from UK-Dale and REDD datasets and the pretrained Convolutional Neural Network VGG16. We then train some basic classifiers and use the metric F1 score to test the performance of this representation. Multiple tests are performed to test the adaptability of the models to unseen houses and different datasets. We find that the performance is on par and in some cases outperforms that of popular deep NN algorithms.

This work has been funded by the E\(\Sigma \Pi \)A (2014–2020) Erevno-Dimiourgo-Kainotomo 2018/EPAnEK Program ‘Energy Controlling Voice Enabled Intelligent Smart Home Ecosystem’, General Secretariat for Research and Technology, Ministry of Education, Research and Religious Affairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aiad, M., Lee, P.H.: Non-intrusive load disaggregation with adaptive estimations of devices main power effects and two-way interactions. Energy Build. 130, 131–139 (2016). https://doi.org/10.1016/j.enbuild.2016.08.050. http://www.sciencedirect.com/science/article/pii/S0378778816307472

    Article  Google Scholar 

  2. Chen, K., Wang, Q., He, Z., Chen, K., Hu, J., He, J.: Convolutional sequence to sequence non-intrusive load monitoring. J. Eng. 2018(17), 1860–1864 (2018). https://doi.org/10.1049/joe.2018.8352

    Article  Google Scholar 

  3. Dai, W., Chen, Y., Xue, G.R., Yang, Q., Yu, Y.: Translated learning: transfer learning across different feature spaces. In: Advances in Neural Information Processing Systems, pp. 353–360 (2009)

    Google Scholar 

  4. De Baets, L., Develder, C., Dhaene, T., Deschrijver, D.: Detection of unidentified appliances in non-intrusive load monitoring using siamese neural networks. Int. J. Electr. Power Energy Syst. 104, 645–653 (2019)

    Article  Google Scholar 

  5. Gao, J., Giri, S., Kara, E.C., Bergés, M.: PLAID: a public dataset of high-resoultion electrical appliance measurements for load identification research: demo abstract. In: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, pp. 198–199. ACM (2014)

    Google Scholar 

  6. Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891 (1992)

    Article  Google Scholar 

  7. Kahl, M., Haq, A.U., Kriechbaumer, T., Jacobsen, H.A.: Whited-a worldwide household and industry transient energy data set. In: 3rd International Workshop on Non-Intrusive Load Monitoring (2016)

    Google Scholar 

  8. Kelly, J., Knottenbelt, W.: The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Sci. Data 2, 150007 (2015). https://doi.org/10.1038/sdata.2015.7

    Article  Google Scholar 

  9. Kelly, J., Knottenbelt, W.: The UK-dale dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Sci. Data 2, 150007 (2015)

    Article  Google Scholar 

  10. Kolter, J.Z., Jaakkola, T.: Approximate Inference in Additive Factorial HMMs with Application to Energy Disaggregation, June 2018. https://doi.org/10.1184/R1/6603563.v1

  11. Kolter, J.Z., Johnson, M.J.: REDD: a public data set for energy disaggregation research. In: Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, vol. 25, pp. 59–62 (2011)

    Google Scholar 

  12. Krystalakos, O., Nalmpantis, C., Vrakas, D.: Sliding window approach for online energy disaggregation using artificial neural networks. In: Proceedings of the 10th Hellenic Conference on Artificial Intelligence, SETN 2018, pp. 7:1–7:6. ACM, New York (2018). http://doi.acm.org/10.1145/3200947.3201011

  13. Lange, H., Bergés, M.: The neural energy decoder: energy disaggregation by combining binary subcomponents (2016)

    Google Scholar 

  14. Nalmpantis, C., Vrakas, D.: Machine learning approaches for non-intrusive load monitoring: from qualitative to quantitative comparation. Artif. Intell. Rev. 1–27 (2018)

    Google Scholar 

  15. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  16. Paradiso, F., Paganelli, F., Giuli, D., Capobianco, S.: Context-based energy disaggregation in smart homes. Future Internet 8(1) (2016). https://doi.org/10.3390/fi8010004. http://www.mdpi.com/1999-5903/8/1/4

    Article  Google Scholar 

  17. Parson, O., Ghosh, S., Weal, M., Rogers, A.: Non-intrusive load monitoring using prior models of general appliance types. In: Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)

    Google Scholar 

  18. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  20. Wang, Z., Oates, T.: Imaging time-series to improve classification and imputation. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  21. Zhang, C., Zhong, M., Wang, Z., Goddard, N., Sutton, C.: Sequence-to-point learning with neural networks for non-intrusive load monitoring. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoforos Nalmpantis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kyrkou, L., Nalmpantis, C., Vrakas, D. (2019). Imaging Time-Series for NILM. In: Macintyre, J., Iliadis, L., Maglogiannis, I., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2019. Communications in Computer and Information Science, vol 1000. Springer, Cham. https://doi.org/10.1007/978-3-030-20257-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20257-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20256-9

  • Online ISBN: 978-3-030-20257-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics