Skip to main content

New Ways to Target Vasa Vasorum for the Prevention and Treatment of Atherosclerosis

  • Chapter
  • First Online:
Atherosclerosis Pathogenesis and Microvascular Dysfunction

Abstract

Given that vasa vasorum and their dysfunction are involved in the initiation and progression of atherosclerosis , several new therapeutic opportunities can be envisioned. In particular, prevention or treatment of microthrombus formation and inhibiting maladaptive angiogenesis are of primary interest. To maintain microvascular endothelial cells in a quiescent state, cell-specific and cell-state-specific signaling events are being investigated in an effort to regulate endothelial cell differentiation, integrity, metabolism, or inflammatory/angiogenic responses. Novel concepts aimed at drugging the microbiome in an effort to modulate its effect on the hemostatic balance as well as novel drugs targeting newly recognized thrombotic components (e.g., neutrophil extracellular traps ) are also discussed. Together with nanomedicine drug delivery, these strategies will allow for new atherosclerosis treatments that permit effective and safe targeting of vasa vasorum .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiménez-Alcázar M, Napirei M, Panda R, et al. Impaired DNase1-mediated degradation of neutrophil extracellular traps is associated with acute thrombotic microangiopathies. J Thromb Haemost. 2015;13:732–42. https://doi.org/10.1111/jth.12796.

    Article  CAS  PubMed  Google Scholar 

  2. Goossens P, Gijbels MJJ, Zernecke A, et al. Myeloid type I interferon signaling promotes atherosclerosis by stimulating macrophage recruitment to lesions. Cell Metab. 2010;12:142–53. https://doi.org/10.1016/j.cmet.2010.06.008.

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Fu Q, Cui H, et al. Interferon-α priming promotes lipid uptake and macrophage-derived foam cell formation: a novel link between interferon-α and atherosclerosis in lupus. Arthritis Rheum. 2011;63:492–502. https://doi.org/10.1002/art.30165.

    Article  CAS  PubMed  Google Scholar 

  4. Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107:15880–5. https://doi.org/10.1073/pnas.1005743107.

    Article  PubMed  Google Scholar 

  5. Fuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol. 2012;32:1777–83. https://doi.org/10.1161/ATVBAHA.111.242859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Awasthi D, Nagarkoti S, Kumar A, et al. Oxidized LDL induced extracellular trap formation in human neutrophils via TLR-PKC-IRAK-MAPK and NADPH-oxidase activation. Free Radic Biol Med. 2016;93:190–203. https://doi.org/10.1016/j.freeradbiomed.2016.01.004.

    Article  CAS  PubMed  Google Scholar 

  7. Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349:316–320. https://doi.org/10.1126/science.aaa8064.

    Article  CAS  Google Scholar 

  8. Wang Y, Xiao Y, Zhong L, et al. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with β-cell autoimmunity in patients with type 1 diabetes. Diabetes. 2014;63:4239–48. https://doi.org/10.2337/db14-0480.

    Article  CAS  PubMed  Google Scholar 

  9. Menegazzo L, Ciciliot S, Poncina N, et al. NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetol. 2015;52:497–503. https://doi.org/10.1007/s00592-014-0676-x.

    Article  CAS  PubMed  Google Scholar 

  10. Fadini GP, Menegazzo L, Rigato M, et al. NETosis delays diabetic wound healing in mice and humans. Diabetes. 2016;65:1061–71. https://doi.org/10.2337/db15-0863.

    Article  CAS  PubMed  Google Scholar 

  11. Menegazzo L, Scattolini V, Cappellari R, et al. The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetol. 2018;55:593–601. https://doi.org/10.1007/s00592-018-1129-8.

    Article  CAS  PubMed  Google Scholar 

  12. Al-Ghoul WM, Kim MS, Fazal N, et al. Evidence for simvastatin anti-inflammatory actions based on quantitative analyses of NETosis and other inflammation/oxidation markers. Results Immunol. 2014;4:14–22. https://doi.org/10.1016/j.rinim.2014.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sørensen OE, Borregaard N. Neutrophil extracellular traps—the dark side of neutrophils. J Clin Invest. 2016;126:1612–20. https://doi.org/10.1172/JCI84538.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Knight JS, Luo W, O’Dell AA, et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res. 2014;114:947–56. https://doi.org/10.1161/CIRCRESAHA.114.303312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5. https://doi.org/10.1126/science.1092385.

    Article  CAS  PubMed  Google Scholar 

  16. Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol. 2012;198:773–83. https://doi.org/10.1083/jcb.201203170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Frese S, Diamond B. Structural modification of DNA—a therapeutic option in SLE? Nat Rev Rheumatol. 2011;7:733–8. https://doi.org/10.1038/nrrheum.2011.153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Macanovic M, Sinicropi D, Shak S, et al. The treatment of systemic lupus erythematosus (SLE) in NZB/W F1 hybrid mice; studies with recombinant murine DNase and with dexamethasone. Clin Exp Immunol. 1996;106:243–52.

    Article  CAS  Google Scholar 

  19. Brill A, Fuchs TA, Savchenko AS, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10:136–44. https://doi.org/10.1111/j.1538-7836.2011.04544.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ge L, Zhou X, Ji W-J, et al. Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy. Am J Physiol Heart Circ Physiol. 2015;308:H500–9. https://doi.org/10.1152/ajpheart.00381.2014.

    Article  CAS  PubMed  Google Scholar 

  21. Borissoff JI, Joosen IA, Versteylen MO, et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol. 2013;33:2032–40. https://doi.org/10.1161/ATVBAHA.113.301627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Döring Y, Soehnlein O, Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res. 2017;120:736–43. https://doi.org/10.1161/CIRCRESAHA.116.309692.

    Article  CAS  PubMed  Google Scholar 

  23. Rohrbach AS, Slade DJ, Thompson PR, Mowen KA. Activation of PAD4 in NET formation. Front Immunol. 2012;3:360. https://doi.org/10.3389/fimmu.2012.00360.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Leshner M, Wang S, Lewis C, et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol. 2012;3:307. https://doi.org/10.3389/fimmu.2012.00307.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Laakkonen JP, Lappalainen JP, Theelen TL, et al. Differential regulation of angiogenic cellular processes and claudin-5 by histamine and VEGF via PI3 K-signaling, transcription factor SNAI2 and interleukin-8. Angiogenesis. 2017;20:109–24. https://doi.org/10.1007/s10456-016-9532-7.

    Article  CAS  PubMed  Google Scholar 

  26. Stenina-Adognravi O. Thrombospondins. Curr Opin Lipidol. 2013;24:401–9. https://doi.org/10.1097/MOL.0b013e3283642912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haasdijk RA, Den Dekker WK, Cheng C, et al. THSD1 preserves vascular integrity and protects against intraplaque haemorrhaging in ApoE-/- mice. Cardiovasc Res. 2016;110:129–39. https://doi.org/10.1093/cvr/cvw015.

    Article  CAS  PubMed  Google Scholar 

  28. Thurston G, Suri C, Smith K, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science. 1999;286:2511–4.

    Article  CAS  Google Scholar 

  29. Post S, Peeters W, Busser E, et al. Balance between angiopoietin-1 and angiopoietin-2 is in favor of angiopoietin-2 in atherosclerotic plaques with high microvessel density. J Vasc Res. 2008;45:244–50. https://doi.org/10.1159/000112939.

    Article  CAS  PubMed  Google Scholar 

  30. Holopainen T, Saharinen P, D’Amico G, et al. Effects of angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst. 2012;104:461–75. https://doi.org/10.1093/jnci/djs009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leow CC, Coffman K, Inigo I, et al. MEDI3617, a human anti-angiopoietin 2 monoclonal antibody, inhibits angiogenesis and tumor growth in human tumor xenograft models. Int J Oncol. 2012;40:1321–30. https://doi.org/10.3892/ijo.2012.1366.

    Article  CAS  PubMed  Google Scholar 

  32. Theelen TL, Lappalainen JP, Sluimer JC, et al. Angiopoietin-2 blocking antibodies reduce early atherosclerotic plaque development in mice. Atherosclerosis. 2015;241:297–304. https://doi.org/10.1016/j.atherosclerosis.2015.05.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Attwell D, Mishra A, Hall CN, et al. What is a pericyte? J Cereb Blood Flow Metab. 2016;36:451–5. https://doi.org/10.1177/0271678X15610340.

    Article  CAS  PubMed  Google Scholar 

  34. Schrimpf C, Teebken OE, Wilhelmi M, Duffield JS. The role of pericyte detachment in vascular rarefaction. J Vasc Res. 2014;51:247–58. https://doi.org/10.1159/000365149.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sluimer JC, Kolodgie FD, Bijnens APJJ, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions. J Am Coll Cardiol. 2009;53:1517–27. https://doi.org/10.1016/j.jacc.2008.12.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lindblom P, Gerhardt H, Liebner S, et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 2003;17:1835–40. https://doi.org/10.1101/gad.266803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61. https://doi.org/10.1038/nature09522.

    Article  CAS  PubMed  Google Scholar 

  38. Xiao L, Yan K, Yang Y, et al. Anti-vascular endothelial growth factor treatment induces blood flow recovery through vascular remodeling in high-fat diet induced diabetic mice. Microvasc Res. 2016;105:70–6. https://doi.org/10.1016/j.mvr.2016.01.005.

    Article  CAS  PubMed  Google Scholar 

  39. Bababeygy SR, Polevaya N V, Youssef S, et al. HMG-CoA reductase inhibition causes increased necrosis and apoptosis in an in vivo mouse glioblastoma multiforme model. Anticancer Res. 2009;29:4901–4908.

    Google Scholar 

  40. Scappaticci FA, Skillings JR, Holden SN, et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. JNCI J Natl Cancer Inst. 2007;99:1232–9. https://doi.org/10.1093/jnci/djm086.

    Article  PubMed  Google Scholar 

  41. Dafer RM, Schneck M, Friberg TR, Jay WM. Intravitreal ranibizumab and bevacizumab: a review of risk. Semin Ophthalmol. 2007;22:201–4. https://doi.org/10.1080/08820530701543024.

    Article  PubMed  Google Scholar 

  42. Anderson KC. Lenalidomide and thalidomide: Mechanisms of action - Similarities and differences. Semin Hematol. 2005;S3–S8.

    Article  CAS  Google Scholar 

  43. Wahl ML, Kenan DJ, Gonzalez-Gronow M, Pizzo SV. Angiostatin’s molecular mechanism: aspects of specificity and regulation elucidated. J Cell Biochem. 2005;96:242–61. https://doi.org/10.1002/jcb.20480.

    Article  CAS  PubMed  Google Scholar 

  44. Thomas M, Kienast Y, Scheuer W, et al. A novel angiopoietin-2 selective fully human antibody with potent anti-tumoral and anti-angiogenic efficacy and superior side effect profile compared to Pan-Angiopoietin-1/-2 inhibitors. PLoS ONE. 2013;8:e54923. https://doi.org/10.1371/journal.pone.0054923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Behl T, Kaur I, Goel H, Kotwani A. Significance of the antiangiogenic mechanisms of thalidomide in the therapy of diabetic retinopathy. Vascul Pharmacol. 2017;92:6–15. https://doi.org/10.1016/j.vph.2015.07.003.

    Article  CAS  PubMed  Google Scholar 

  46. Gössl M, Herrmann J, Tang H, et al. Prevention of vasa vasorum neovascularization attenuates early neointima formation in experimental hypercholesterolemia. Basic Res Cardiol. 2009;104:695–706. https://doi.org/10.1007/s00395-009-0036-0.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kampschulte M, Gunkel I, Stieger P, et al. Thalidomide influences atherogenesis in aortas of ApoE-/-/LDLR-/- double knockout mice: a nano-CT study. Int J Cardiovasc Imaging. 2014;30:795–802. https://doi.org/10.1007/s10554-014-0380-5.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moser TL, Stack MS, Asplin I, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA. 1999;96:2811–6.

    Article  CAS  Google Scholar 

  49. Moulton KS, Vakili K, Zurakowski D, et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci. 2003;100:4736–41. https://doi.org/10.1073/pnas.0730843100.

    Article  CAS  PubMed  Google Scholar 

  50. Moulton KS, Heller E, Konerding MA, et al. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation. 1999;99:1726–32.

    Article  CAS  Google Scholar 

  51. Drinane M, Mollmark J, Zagorchev L, et al. The antiangiogenic activity of rPAI-1(23) inhibits vasa vasorum and growth of atherosclerotic plaque. Circ Res. 2009;104:337–45. https://doi.org/10.1161/CIRCRESAHA.108.184622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mollmark J, Ravi S, Sun B, et al. Antiangiogenic activity of rPAI-1(23) promotes vasa vasorum regression in hypercholesterolemic mice through a plasmin-dependent mechanism. Circ Res. 2011;108:1419–28. https://doi.org/10.1161/CIRCRESAHA.111.246249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mina R, Cerrato C, Bernardini A, et al. New pharmacotherapy options for multiple myeloma. Expert Opin Pharmacother. 2016;17:181–92. https://doi.org/10.1517/14656566.2016.1115016.

    Article  CAS  PubMed  Google Scholar 

  54. Rajabi M, Mousa S. The role of angiogenesis in cancer treatment. Biomedicines. 2017;5:34. https://doi.org/10.3390/biomedicines5020034.

    Article  CAS  PubMed Central  Google Scholar 

  55. Gullestad L, Ueland T, Fjeld JG, et al. Effect of thalidomide on cardiac remodeling in chronic heart failure: results of a double-blind, placebo-controlled study. Circulation. 2005;112:3408–14. https://doi.org/10.1161/CIRCULATIONAHA.105.564971.

    Article  CAS  PubMed  Google Scholar 

  56. Fernando NT, Koch M, Rothrock C, et al. Tumor escape from endogenous, extracellular matrix-associated angiogenesis inhibitors by up-regulation of multiple proangiogenic factors. Clin Cancer Res. 2008;14:1529–39. https://doi.org/10.1158/1078-0432.CCR-07-4126.

    Article  CAS  PubMed  Google Scholar 

  57. Pelaz B, Alexiou C, Alvarez-Puebla RA, et al. Diverse applications of nanomedicine. ACS Nano. 2017;11:2313–81. https://doi.org/10.1021/acsnano.6b06040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm. 2004;284:109–22. https://doi.org/10.1016/j.ijpharm.2004.07.019.

    Article  CAS  PubMed  Google Scholar 

  59. Ofek P, Tiram G, Satchi-Fainaro R. Angiogenesis regulation by nanocarriers bearing RNA interference. Adv Drug Deliv Rev. 2017;119:3–19. https://doi.org/10.1016/j.addr.2017.01.008.

    Article  CAS  PubMed  Google Scholar 

  60. Niu Z, Conejos-Sánchez I, Griffin BT, et al. Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106:337–54. https://doi.org/10.1016/j.addr.2016.04.001.

    Article  CAS  PubMed  Google Scholar 

  61. Alaarg A, Pérez-Medina C, Metselaar JM, et al. Applying nanomedicine in maladaptive inflammation and angiogenesis. Adv Drug Deliv Rev. 2017;119:143–58. https://doi.org/10.1016/j.addr.2017.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Matoba T, Koga J, Nakano K, et al. Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease. J Cardiol. 2017;70:206–11. https://doi.org/10.1016/j.jjcc.2017.03.005.

    Article  PubMed  Google Scholar 

  63. Wang Y, Liu P, Duan Y, et al. Specific cell targeting with APRPG conjugated PEG-PLGA nanoparticles for treating ovarian cancer. Biomaterials. 2014;35:983–92. https://doi.org/10.1016/j.biomaterials.2013.09.062.

    Article  CAS  PubMed  Google Scholar 

  64. Winter PM, Caruthers SD, Zhang H, et al. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc Imaging. 2008;1:624–34. https://doi.org/10.1016/j.jcmg.2008.06.003.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Winter PM, Neubauer AM, Caruthers SD, et al. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26:2103–9. https://doi.org/10.1161/01.ATV.0000235724.11299.76.

    Article  CAS  PubMed  Google Scholar 

  66. Katsuki S, Matoba T, Nakashiro S, et al. Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. Circulation. 2014;129:896–906. https://doi.org/10.1161/CIRCULATIONAHA.113.002870.

    Article  CAS  PubMed  Google Scholar 

  67. Nakashiro S, Matoba T, Umezu R, et al. Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by Regulating Monocyte/Macrophage Differentiation in ApoE-/- Mice. Arterioscler Thromb Vasc Biol. 2016;36:491–500. https://doi.org/10.1161/ATVBAHA.115.307057.

    Article  CAS  PubMed  Google Scholar 

  68. Beldman TJ, Senders ML, Alaarg A, et al. Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis. ACS Nano. 2017;11:5785–99. https://doi.org/10.1021/acsnano.7b01385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sager HB, Dutta P, Dahlman JE, et al. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci Transl Med. 2016;8:342ra80–342ra80. https://doi.org/10.1126/scitranslmed.aaf1435.

    Article  Google Scholar 

  70. Parvanian S, Mostafavi SM, Aghashiri M. Multifunctional nanoparticle developments in cancer diagnosis and treatment. Sens Bio-Sensing Res. 2017;13:81–7. https://doi.org/10.1016/J.SBSR.2016.08.002.

    Article  Google Scholar 

  71. Tang J, Baxter S, Menon A, et al. Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proc Natl Acad Sci. 2016;113:E6731–40. https://doi.org/10.1073/pnas.1609629113.

    Article  CAS  PubMed  Google Scholar 

  72. De Bock K, Georgiadou M, Schoors S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154:651–63. https://doi.org/10.1016/j.cell.2013.06.037.

    Article  CAS  PubMed  Google Scholar 

  73. Boyle EC, Sedding DG, Haverich A. Targeting vasa vasorum dysfunction to prevent atherosclerosis. Vascul Pharmacol. 2017;96–98:5–10. https://doi.org/10.1016/j.vph.2017.08.003.

    Article  CAS  PubMed  Google Scholar 

  74. Sedding DG, Boyle EC, Demandt JAF, et al. Vasa vasorum angiogenesis: key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease. Front Immunol. 2018;9:706. https://doi.org/10.3389/fimmu.2018.00706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bierhansl L, Conradi L-C, Treps L, et al. Central role of metabolism in endothelial cell function and vascular disease. Physiology. 2017;32:126–40. https://doi.org/10.1152/physiol.00031.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Missiaen R, Morales-Rodriguez F, Eelen G, Carmeliet P. Targeting endothelial metabolism for anti-angiogenesis therapy: a pharmacological perspective. Vascul Pharmacol. 2017;90:8–18. https://doi.org/10.1016/j.vph.2017.01.001.

    Article  CAS  PubMed  Google Scholar 

  77. Potente M, Carmeliet P. The link between angiogenesis and endothelial metabolism. Annu Rev Physiol. 2017;79:43–66. https://doi.org/10.1146/annurev-physiol-021115-105134.

    Article  CAS  PubMed  Google Scholar 

  78. Teuwen L-A, Draoui N, Dubois C, Carmeliet P. Endothelial cell metabolism. Curr Opin Hematol. 2017;24:240–7. https://doi.org/10.1097/MOH.0000000000000335.

    Article  CAS  PubMed  Google Scholar 

  79. Schoors S, De Bock K, Cantelmo AR, et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 2014;19:37–48. https://doi.org/10.1016/j.cmet.2013.11.008.

    Article  CAS  PubMed  Google Scholar 

  80. Cantelmo AR, Conradi L-C, Brajic A, et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell. 2016;30:968–85. https://doi.org/10.1016/j.ccell.2016.10.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nakashima Y, Raines EW, Plump AS, et al. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol. 1998;18:842–51.

    Article  CAS  Google Scholar 

  82. O’Brien KD, Allen MD, McDonald TO, et al. Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest. 1993;92:945–51. https://doi.org/10.1172/JCI116670.

    Article  PubMed  PubMed Central  Google Scholar 

  83. O’Brien KD, McDonald TO, Chait A, et al. Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation. 1996;93:672–82.

    Article  Google Scholar 

  84. Ivanova EA, Bobryshev YV, Orekhov AN. Intimal pericytes as the second line of immune defence in atherosclerosis. World J Cardiol. 2015;7:583–93. https://doi.org/10.4330/wjc.v7.i10.583.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ivanova E, Kovacs-Oller T, Sagdullaev BT. Vascular pericyte impairment and connexin43 gap junction deficit contribute to vasomotor decline in diabetic retinopathy. J Neurosci. 2017;37:7580–94. https://doi.org/10.1523/JNEUROSCI.0187-17.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schoors S, Cantelmo AR, Georgiadou M, et al. Incomplete and transitory decrease of glycolysis: a new paradigm for anti-angiogenic therapy? Cell Cycle. 2014;13:16–22. https://doi.org/10.4161/cc.27519.

    Article  CAS  PubMed  Google Scholar 

  87. Lapel M, Weston P, Strassheim D, et al. Glycolysis and oxidative phosphorylation are essential for purinergic receptor-mediated angiogenic responses in vasa vasorum endothelial cells. Am J Physiol Cell Physiol. 2017;312:C56–70. https://doi.org/10.1152/ajpcell.00250.2016.

    Article  PubMed  Google Scholar 

  88. Yegutkin GG, Helenius M, Kaczmarek E, et al. Chronic hypoxia impairs extracellular nucleotide metabolism and barrier function in pulmonary artery vasa vasorum endothelial cells. Angiogenesis. 2011;14:503–13. https://doi.org/10.1007/s10456-011-9234-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brown JD, Lin CY, Duan Q, et al. NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell. 2014;56:219–31. https://doi.org/10.1016/j.molcel.2014.08.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zaina S, Heyn H, Carmona FJ, et al. DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 2014;7:692–700. https://doi.org/10.1161/CIRCGENETICS.113.000441.

    Article  CAS  PubMed  Google Scholar 

  91. Kumar A, Kumar S, Vikram A, et al. Histone and DNA methylation-mediated epigenetic downregulation of endothelial Kruppel-like factor 2 by low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol. 2013;33:1936–42. https://doi.org/10.1161/ATVBAHA.113.301765.

    Article  CAS  PubMed  Google Scholar 

  92. Cao Q, Wang X, Jia L, et al. Inhibiting DNA Methylation by 5-Aza-2′-deoxycytidine ameliorates atherosclerosis through suppressing macrophage inflammation. Endocrinology. 2014;155:4925–38. https://doi.org/10.1210/en.2014-1595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dunn J, Qiu H, Kim S, et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest. 2014;124:3187–99. https://doi.org/10.1172/JCI74792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ferri E, Petosa C, McKenna CE. Bromodomains: Structure, function and pharmacology of inhibition. Biochem Pharmacol. 2016;106:1–18. https://doi.org/10.1016/j.bcp.2015.12.005.

    Article  CAS  PubMed  Google Scholar 

  95. da Motta LL, Ledaki I, Purshouse K, et al. The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene. 2017;36:122–32. https://doi.org/10.1038/onc.2016.184.

    Article  CAS  PubMed  Google Scholar 

  96. Hosin AA, Prasad A, Viiri LE, et al. MicroRNAs in atherosclerosis. J Vasc Res. 2014;51:338–49. https://doi.org/10.1159/000368193.

    Article  CAS  PubMed  Google Scholar 

  97. Christopher A, Kaur R, Kaur G, et al. MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect Clin Res. 2016;7:68. https://doi.org/10.4103/2229-3485.179431.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Araldi E, Chamorro-Jorganes A, van Solingen C, et al. Therapeutic potential of modulating microRNAs in atherosclerotic vascular disease. Curr Vasc Pharmacol. 2013.

    Google Scholar 

  99. Welten SMJ, Goossens EAC, Quax PHA, Nossent AY. The multifactorial nature of microRNAs in vascular remodelling. Cardiovasc Res. 2016;110:6–22. https://doi.org/10.1093/cvr/cvw039.

    Article  CAS  PubMed  Google Scholar 

  100. Harris TA, Yamakuchi M, Ferlito M, et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA. 2008;105:1516–21. https://doi.org/10.1073/pnas.0707493105.

    Article  PubMed  Google Scholar 

  101. Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15:272–84. https://doi.org/10.1016/j.devcel.2008.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. van Solingen C, Seghers L, Bijkerk R, et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med. 2009;13:1577–85. https://doi.org/10.1111/j.1582-4934.2008.00613.x.

    Article  CAS  PubMed  Google Scholar 

  103. Voellenkle C, van Rooij J, Guffanti A, et al. Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs. RNA. 2012;18:472–84. https://doi.org/10.1261/rna.027615.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Human miR-221/222 in physiological and atherosclerotic vascular remodeling. Biomed Res Int. 2015;2015:1–18. https://doi.org/10.1155/2015/354517.

    Article  CAS  Google Scholar 

  105. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100:1164–73. https://doi.org/10.1161/01.RES.0000265065.26744.17.

    Article  CAS  PubMed  Google Scholar 

  106. Liu X, Cheng Y, Zhang S, et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104:476–87. https://doi.org/10.1161/CIRCRESAHA.108.185363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Janssen HLA, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368:1685–94. https://doi.org/10.1056/NEJMoa1209026.

    Article  CAS  PubMed  Google Scholar 

  108. Jäckel S, Kiouptsi K, Lillich M, et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood. 2017;130:542–53. https://doi.org/10.1182/blood-2016-11-754416.

    Article  CAS  PubMed  Google Scholar 

  109. Spadoni I, Zagato E, Bertocchi A, et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science. 2015;350:830–4. https://doi.org/10.1126/science.aad0135.

    Article  CAS  PubMed  Google Scholar 

  110. Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163:1585–95. https://doi.org/10.1016/j.cell.2015.11.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Roberts AB, Gu X, Buffa JA, et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med. 2018;24:1407–17. https://doi.org/10.1038/s41591-018-0128-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Haverich .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haverich, A., Boyle, E.C. (2019). New Ways to Target Vasa Vasorum for the Prevention and Treatment of Atherosclerosis. In: Atherosclerosis Pathogenesis and Microvascular Dysfunction. Springer, Cham. https://doi.org/10.1007/978-3-030-20245-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20245-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20244-6

  • Online ISBN: 978-3-030-20245-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics