Advertisement

New Ways to Target Vasa Vasorum for the Prevention and Treatment of Atherosclerosis

Chapter
  • 386 Downloads

Abstract

Given that vasa vasorum and their dysfunction are involved in the initiation and progression of atherosclerosis, several new therapeutic opportunities can be envisioned. In particular, prevention or treatment of microthrombus formation and inhibiting maladaptive angiogenesis are of primary interest. To maintain microvascular endothelial cells in a quiescent state, cell-specific and cell-state-specific signaling events are being investigated in an effort to regulate endothelial cell differentiation, integrity, metabolism, or inflammatory/angiogenic responses. Novel concepts aimed at drugging the microbiome in an effort to modulate its effect on the hemostatic balance as well as novel drugs targeting newly recognized thrombotic components (e.g., neutrophil extracellular traps) are also discussed. Together with nanomedicine drug delivery, these strategies will allow for new atherosclerosis treatments that permit effective and safe targeting of vasa vasorum.

Keywords

Atherosclerosis Vasa vasorum Maladaptive angiogenesis Nanomedicine Endothelial metabolism Endothelial quiescence Epigenetic modifications MicroRNAs Intestinal microbiota 

References

  1. 1.
    Jiménez-Alcázar M, Napirei M, Panda R, et al. Impaired DNase1-mediated degradation of neutrophil extracellular traps is associated with acute thrombotic microangiopathies. J Thromb Haemost. 2015;13:732–42.  https://doi.org/10.1111/jth.12796.CrossRefPubMedGoogle Scholar
  2. 2.
    Goossens P, Gijbels MJJ, Zernecke A, et al. Myeloid type I interferon signaling promotes atherosclerosis by stimulating macrophage recruitment to lesions. Cell Metab. 2010;12:142–53.  https://doi.org/10.1016/j.cmet.2010.06.008.CrossRefPubMedGoogle Scholar
  3. 3.
    Li J, Fu Q, Cui H, et al. Interferon-α priming promotes lipid uptake and macrophage-derived foam cell formation: a novel link between interferon-α and atherosclerosis in lupus. Arthritis Rheum. 2011;63:492–502.  https://doi.org/10.1002/art.30165.CrossRefPubMedGoogle Scholar
  4. 4.
    Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107:15880–5.  https://doi.org/10.1073/pnas.1005743107.CrossRefPubMedGoogle Scholar
  5. 5.
    Fuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol. 2012;32:1777–83.  https://doi.org/10.1161/ATVBAHA.111.242859.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Awasthi D, Nagarkoti S, Kumar A, et al. Oxidized LDL induced extracellular trap formation in human neutrophils via TLR-PKC-IRAK-MAPK and NADPH-oxidase activation. Free Radic Biol Med. 2016;93:190–203.  https://doi.org/10.1016/j.freeradbiomed.2016.01.004.CrossRefPubMedGoogle Scholar
  7. 7.
    Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349:316–320.  https://doi.org/10.1126/science.aaa8064.CrossRefGoogle Scholar
  8. 8.
    Wang Y, Xiao Y, Zhong L, et al. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with β-cell autoimmunity in patients with type 1 diabetes. Diabetes. 2014;63:4239–48.  https://doi.org/10.2337/db14-0480.CrossRefPubMedGoogle Scholar
  9. 9.
    Menegazzo L, Ciciliot S, Poncina N, et al. NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetol. 2015;52:497–503.  https://doi.org/10.1007/s00592-014-0676-x.CrossRefPubMedGoogle Scholar
  10. 10.
    Fadini GP, Menegazzo L, Rigato M, et al. NETosis delays diabetic wound healing in mice and humans. Diabetes. 2016;65:1061–71.  https://doi.org/10.2337/db15-0863.CrossRefPubMedGoogle Scholar
  11. 11.
    Menegazzo L, Scattolini V, Cappellari R, et al. The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetol. 2018;55:593–601.  https://doi.org/10.1007/s00592-018-1129-8.CrossRefPubMedGoogle Scholar
  12. 12.
    Al-Ghoul WM, Kim MS, Fazal N, et al. Evidence for simvastatin anti-inflammatory actions based on quantitative analyses of NETosis and other inflammation/oxidation markers. Results Immunol. 2014;4:14–22.  https://doi.org/10.1016/j.rinim.2014.03.001.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sørensen OE, Borregaard N. Neutrophil extracellular traps—the dark side of neutrophils. J Clin Invest. 2016;126:1612–20.  https://doi.org/10.1172/JCI84538.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Knight JS, Luo W, O’Dell AA, et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res. 2014;114:947–56.  https://doi.org/10.1161/CIRCRESAHA.114.303312.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.  https://doi.org/10.1126/science.1092385.CrossRefPubMedGoogle Scholar
  16. 16.
    Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol. 2012;198:773–83.  https://doi.org/10.1083/jcb.201203170.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Frese S, Diamond B. Structural modification of DNA—a therapeutic option in SLE? Nat Rev Rheumatol. 2011;7:733–8.  https://doi.org/10.1038/nrrheum.2011.153.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Macanovic M, Sinicropi D, Shak S, et al. The treatment of systemic lupus erythematosus (SLE) in NZB/W F1 hybrid mice; studies with recombinant murine DNase and with dexamethasone. Clin Exp Immunol. 1996;106:243–52.CrossRefGoogle Scholar
  19. 19.
    Brill A, Fuchs TA, Savchenko AS, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10:136–44.  https://doi.org/10.1111/j.1538-7836.2011.04544.x.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ge L, Zhou X, Ji W-J, et al. Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy. Am J Physiol Heart Circ Physiol. 2015;308:H500–9.  https://doi.org/10.1152/ajpheart.00381.2014.CrossRefPubMedGoogle Scholar
  21. 21.
    Borissoff JI, Joosen IA, Versteylen MO, et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol. 2013;33:2032–40.  https://doi.org/10.1161/ATVBAHA.113.301627.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Döring Y, Soehnlein O, Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res. 2017;120:736–43.  https://doi.org/10.1161/CIRCRESAHA.116.309692.CrossRefPubMedGoogle Scholar
  23. 23.
    Rohrbach AS, Slade DJ, Thompson PR, Mowen KA. Activation of PAD4 in NET formation. Front Immunol. 2012;3:360.  https://doi.org/10.3389/fimmu.2012.00360.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Leshner M, Wang S, Lewis C, et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol. 2012;3:307.  https://doi.org/10.3389/fimmu.2012.00307.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Laakkonen JP, Lappalainen JP, Theelen TL, et al. Differential regulation of angiogenic cellular processes and claudin-5 by histamine and VEGF via PI3 K-signaling, transcription factor SNAI2 and interleukin-8. Angiogenesis. 2017;20:109–24.  https://doi.org/10.1007/s10456-016-9532-7.CrossRefPubMedGoogle Scholar
  26. 26.
    Stenina-Adognravi O. Thrombospondins. Curr Opin Lipidol. 2013;24:401–9.  https://doi.org/10.1097/MOL.0b013e3283642912.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Haasdijk RA, Den Dekker WK, Cheng C, et al. THSD1 preserves vascular integrity and protects against intraplaque haemorrhaging in ApoE-/- mice. Cardiovasc Res. 2016;110:129–39.  https://doi.org/10.1093/cvr/cvw015.CrossRefPubMedGoogle Scholar
  28. 28.
    Thurston G, Suri C, Smith K, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science. 1999;286:2511–4.CrossRefGoogle Scholar
  29. 29.
    Post S, Peeters W, Busser E, et al. Balance between angiopoietin-1 and angiopoietin-2 is in favor of angiopoietin-2 in atherosclerotic plaques with high microvessel density. J Vasc Res. 2008;45:244–50.  https://doi.org/10.1159/000112939.CrossRefPubMedGoogle Scholar
  30. 30.
    Holopainen T, Saharinen P, D’Amico G, et al. Effects of angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst. 2012;104:461–75.  https://doi.org/10.1093/jnci/djs009.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Leow CC, Coffman K, Inigo I, et al. MEDI3617, a human anti-angiopoietin 2 monoclonal antibody, inhibits angiogenesis and tumor growth in human tumor xenograft models. Int J Oncol. 2012;40:1321–30.  https://doi.org/10.3892/ijo.2012.1366.CrossRefPubMedGoogle Scholar
  32. 32.
    Theelen TL, Lappalainen JP, Sluimer JC, et al. Angiopoietin-2 blocking antibodies reduce early atherosclerotic plaque development in mice. Atherosclerosis. 2015;241:297–304.  https://doi.org/10.1016/j.atherosclerosis.2015.05.018.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Attwell D, Mishra A, Hall CN, et al. What is a pericyte? J Cereb Blood Flow Metab. 2016;36:451–5.  https://doi.org/10.1177/0271678X15610340.CrossRefPubMedGoogle Scholar
  34. 34.
    Schrimpf C, Teebken OE, Wilhelmi M, Duffield JS. The role of pericyte detachment in vascular rarefaction. J Vasc Res. 2014;51:247–58.  https://doi.org/10.1159/000365149.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sluimer JC, Kolodgie FD, Bijnens APJJ, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions. J Am Coll Cardiol. 2009;53:1517–27.  https://doi.org/10.1016/j.jacc.2008.12.056.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lindblom P, Gerhardt H, Liebner S, et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 2003;17:1835–40.  https://doi.org/10.1101/gad.266803.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61.  https://doi.org/10.1038/nature09522.CrossRefPubMedGoogle Scholar
  38. 38.
    Xiao L, Yan K, Yang Y, et al. Anti-vascular endothelial growth factor treatment induces blood flow recovery through vascular remodeling in high-fat diet induced diabetic mice. Microvasc Res. 2016;105:70–6.  https://doi.org/10.1016/j.mvr.2016.01.005.CrossRefPubMedGoogle Scholar
  39. 39.
    Bababeygy SR, Polevaya N V, Youssef S, et al. HMG-CoA reductase inhibition causes increased necrosis and apoptosis in an in vivo mouse glioblastoma multiforme model. Anticancer Res. 2009;29:4901–4908.Google Scholar
  40. 40.
    Scappaticci FA, Skillings JR, Holden SN, et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. JNCI J Natl Cancer Inst. 2007;99:1232–9.  https://doi.org/10.1093/jnci/djm086.CrossRefPubMedGoogle Scholar
  41. 41.
    Dafer RM, Schneck M, Friberg TR, Jay WM. Intravitreal ranibizumab and bevacizumab: a review of risk. Semin Ophthalmol. 2007;22:201–4.  https://doi.org/10.1080/08820530701543024.CrossRefPubMedGoogle Scholar
  42. 42.
    Anderson KC. Lenalidomide and thalidomide: Mechanisms of action - Similarities and differences. Semin Hematol. 2005;S3–S8.CrossRefGoogle Scholar
  43. 43.
    Wahl ML, Kenan DJ, Gonzalez-Gronow M, Pizzo SV. Angiostatin’s molecular mechanism: aspects of specificity and regulation elucidated. J Cell Biochem. 2005;96:242–61.  https://doi.org/10.1002/jcb.20480.CrossRefPubMedGoogle Scholar
  44. 44.
    Thomas M, Kienast Y, Scheuer W, et al. A novel angiopoietin-2 selective fully human antibody with potent anti-tumoral and anti-angiogenic efficacy and superior side effect profile compared to Pan-Angiopoietin-1/-2 inhibitors. PLoS ONE. 2013;8:e54923.  https://doi.org/10.1371/journal.pone.0054923.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Behl T, Kaur I, Goel H, Kotwani A. Significance of the antiangiogenic mechanisms of thalidomide in the therapy of diabetic retinopathy. Vascul Pharmacol. 2017;92:6–15.  https://doi.org/10.1016/j.vph.2015.07.003.CrossRefPubMedGoogle Scholar
  46. 46.
    Gössl M, Herrmann J, Tang H, et al. Prevention of vasa vasorum neovascularization attenuates early neointima formation in experimental hypercholesterolemia. Basic Res Cardiol. 2009;104:695–706.  https://doi.org/10.1007/s00395-009-0036-0.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kampschulte M, Gunkel I, Stieger P, et al. Thalidomide influences atherogenesis in aortas of ApoE-/-/LDLR-/- double knockout mice: a nano-CT study. Int J Cardiovasc Imaging. 2014;30:795–802.  https://doi.org/10.1007/s10554-014-0380-5.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Moser TL, Stack MS, Asplin I, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA. 1999;96:2811–6.CrossRefGoogle Scholar
  49. 49.
    Moulton KS, Vakili K, Zurakowski D, et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci. 2003;100:4736–41.  https://doi.org/10.1073/pnas.0730843100.CrossRefPubMedGoogle Scholar
  50. 50.
    Moulton KS, Heller E, Konerding MA, et al. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation. 1999;99:1726–32.CrossRefGoogle Scholar
  51. 51.
    Drinane M, Mollmark J, Zagorchev L, et al. The antiangiogenic activity of rPAI-1(23) inhibits vasa vasorum and growth of atherosclerotic plaque. Circ Res. 2009;104:337–45.  https://doi.org/10.1161/CIRCRESAHA.108.184622.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Mollmark J, Ravi S, Sun B, et al. Antiangiogenic activity of rPAI-1(23) promotes vasa vasorum regression in hypercholesterolemic mice through a plasmin-dependent mechanism. Circ Res. 2011;108:1419–28.  https://doi.org/10.1161/CIRCRESAHA.111.246249.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mina R, Cerrato C, Bernardini A, et al. New pharmacotherapy options for multiple myeloma. Expert Opin Pharmacother. 2016;17:181–92.  https://doi.org/10.1517/14656566.2016.1115016.CrossRefPubMedGoogle Scholar
  54. 54.
    Rajabi M, Mousa S. The role of angiogenesis in cancer treatment. Biomedicines. 2017;5:34.  https://doi.org/10.3390/biomedicines5020034.CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Gullestad L, Ueland T, Fjeld JG, et al. Effect of thalidomide on cardiac remodeling in chronic heart failure: results of a double-blind, placebo-controlled study. Circulation. 2005;112:3408–14.  https://doi.org/10.1161/CIRCULATIONAHA.105.564971.CrossRefPubMedGoogle Scholar
  56. 56.
    Fernando NT, Koch M, Rothrock C, et al. Tumor escape from endogenous, extracellular matrix-associated angiogenesis inhibitors by up-regulation of multiple proangiogenic factors. Clin Cancer Res. 2008;14:1529–39.  https://doi.org/10.1158/1078-0432.CCR-07-4126.CrossRefPubMedGoogle Scholar
  57. 57.
    Pelaz B, Alexiou C, Alvarez-Puebla RA, et al. Diverse applications of nanomedicine. ACS Nano. 2017;11:2313–81.  https://doi.org/10.1021/acsnano.6b06040.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm. 2004;284:109–22.  https://doi.org/10.1016/j.ijpharm.2004.07.019.CrossRefPubMedGoogle Scholar
  59. 59.
    Ofek P, Tiram G, Satchi-Fainaro R. Angiogenesis regulation by nanocarriers bearing RNA interference. Adv Drug Deliv Rev. 2017;119:3–19.  https://doi.org/10.1016/j.addr.2017.01.008.CrossRefPubMedGoogle Scholar
  60. 60.
    Niu Z, Conejos-Sánchez I, Griffin BT, et al. Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106:337–54.  https://doi.org/10.1016/j.addr.2016.04.001.CrossRefPubMedGoogle Scholar
  61. 61.
    Alaarg A, Pérez-Medina C, Metselaar JM, et al. Applying nanomedicine in maladaptive inflammation and angiogenesis. Adv Drug Deliv Rev. 2017;119:143–58.  https://doi.org/10.1016/j.addr.2017.05.009.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Matoba T, Koga J, Nakano K, et al. Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease. J Cardiol. 2017;70:206–11.  https://doi.org/10.1016/j.jjcc.2017.03.005.CrossRefPubMedGoogle Scholar
  63. 63.
    Wang Y, Liu P, Duan Y, et al. Specific cell targeting with APRPG conjugated PEG-PLGA nanoparticles for treating ovarian cancer. Biomaterials. 2014;35:983–92.  https://doi.org/10.1016/j.biomaterials.2013.09.062.CrossRefPubMedGoogle Scholar
  64. 64.
    Winter PM, Caruthers SD, Zhang H, et al. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc Imaging. 2008;1:624–34.  https://doi.org/10.1016/j.jcmg.2008.06.003.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Winter PM, Neubauer AM, Caruthers SD, et al. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26:2103–9.  https://doi.org/10.1161/01.ATV.0000235724.11299.76.CrossRefPubMedGoogle Scholar
  66. 66.
    Katsuki S, Matoba T, Nakashiro S, et al. Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. Circulation. 2014;129:896–906.  https://doi.org/10.1161/CIRCULATIONAHA.113.002870.CrossRefPubMedGoogle Scholar
  67. 67.
    Nakashiro S, Matoba T, Umezu R, et al. Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by Regulating Monocyte/Macrophage Differentiation in ApoE-/- Mice. Arterioscler Thromb Vasc Biol. 2016;36:491–500.  https://doi.org/10.1161/ATVBAHA.115.307057.CrossRefPubMedGoogle Scholar
  68. 68.
    Beldman TJ, Senders ML, Alaarg A, et al. Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis. ACS Nano. 2017;11:5785–99.  https://doi.org/10.1021/acsnano.7b01385.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Sager HB, Dutta P, Dahlman JE, et al. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci Transl Med. 2016;8:342ra80–342ra80.  https://doi.org/10.1126/scitranslmed.aaf1435.CrossRefGoogle Scholar
  70. 70.
    Parvanian S, Mostafavi SM, Aghashiri M. Multifunctional nanoparticle developments in cancer diagnosis and treatment. Sens Bio-Sensing Res. 2017;13:81–7.  https://doi.org/10.1016/J.SBSR.2016.08.002.CrossRefGoogle Scholar
  71. 71.
    Tang J, Baxter S, Menon A, et al. Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proc Natl Acad Sci. 2016;113:E6731–40.  https://doi.org/10.1073/pnas.1609629113.CrossRefPubMedGoogle Scholar
  72. 72.
    De Bock K, Georgiadou M, Schoors S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154:651–63.  https://doi.org/10.1016/j.cell.2013.06.037.CrossRefPubMedGoogle Scholar
  73. 73.
    Boyle EC, Sedding DG, Haverich A. Targeting vasa vasorum dysfunction to prevent atherosclerosis. Vascul Pharmacol. 2017;96–98:5–10.  https://doi.org/10.1016/j.vph.2017.08.003.CrossRefPubMedGoogle Scholar
  74. 74.
    Sedding DG, Boyle EC, Demandt JAF, et al. Vasa vasorum angiogenesis: key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease. Front Immunol. 2018;9:706.  https://doi.org/10.3389/fimmu.2018.00706.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Bierhansl L, Conradi L-C, Treps L, et al. Central role of metabolism in endothelial cell function and vascular disease. Physiology. 2017;32:126–40.  https://doi.org/10.1152/physiol.00031.2016.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Missiaen R, Morales-Rodriguez F, Eelen G, Carmeliet P. Targeting endothelial metabolism for anti-angiogenesis therapy: a pharmacological perspective. Vascul Pharmacol. 2017;90:8–18.  https://doi.org/10.1016/j.vph.2017.01.001.CrossRefPubMedGoogle Scholar
  77. 77.
    Potente M, Carmeliet P. The link between angiogenesis and endothelial metabolism. Annu Rev Physiol. 2017;79:43–66.  https://doi.org/10.1146/annurev-physiol-021115-105134.CrossRefPubMedGoogle Scholar
  78. 78.
    Teuwen L-A, Draoui N, Dubois C, Carmeliet P. Endothelial cell metabolism. Curr Opin Hematol. 2017;24:240–7.  https://doi.org/10.1097/MOH.0000000000000335.CrossRefPubMedGoogle Scholar
  79. 79.
    Schoors S, De Bock K, Cantelmo AR, et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 2014;19:37–48.  https://doi.org/10.1016/j.cmet.2013.11.008.CrossRefPubMedGoogle Scholar
  80. 80.
    Cantelmo AR, Conradi L-C, Brajic A, et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell. 2016;30:968–85.  https://doi.org/10.1016/j.ccell.2016.10.006.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Nakashima Y, Raines EW, Plump AS, et al. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol. 1998;18:842–51.CrossRefGoogle Scholar
  82. 82.
    O’Brien KD, Allen MD, McDonald TO, et al. Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest. 1993;92:945–51.  https://doi.org/10.1172/JCI116670.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    O’Brien KD, McDonald TO, Chait A, et al. Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation. 1996;93:672–82.CrossRefGoogle Scholar
  84. 84.
    Ivanova EA, Bobryshev YV, Orekhov AN. Intimal pericytes as the second line of immune defence in atherosclerosis. World J Cardiol. 2015;7:583–93.  https://doi.org/10.4330/wjc.v7.i10.583.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Ivanova E, Kovacs-Oller T, Sagdullaev BT. Vascular pericyte impairment and connexin43 gap junction deficit contribute to vasomotor decline in diabetic retinopathy. J Neurosci. 2017;37:7580–94.  https://doi.org/10.1523/JNEUROSCI.0187-17.2017.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Schoors S, Cantelmo AR, Georgiadou M, et al. Incomplete and transitory decrease of glycolysis: a new paradigm for anti-angiogenic therapy? Cell Cycle. 2014;13:16–22.  https://doi.org/10.4161/cc.27519.CrossRefPubMedGoogle Scholar
  87. 87.
    Lapel M, Weston P, Strassheim D, et al. Glycolysis and oxidative phosphorylation are essential for purinergic receptor-mediated angiogenic responses in vasa vasorum endothelial cells. Am J Physiol Cell Physiol. 2017;312:C56–70.  https://doi.org/10.1152/ajpcell.00250.2016.CrossRefPubMedGoogle Scholar
  88. 88.
    Yegutkin GG, Helenius M, Kaczmarek E, et al. Chronic hypoxia impairs extracellular nucleotide metabolism and barrier function in pulmonary artery vasa vasorum endothelial cells. Angiogenesis. 2011;14:503–13.  https://doi.org/10.1007/s10456-011-9234-0.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Brown JD, Lin CY, Duan Q, et al. NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell. 2014;56:219–31.  https://doi.org/10.1016/j.molcel.2014.08.024.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Zaina S, Heyn H, Carmona FJ, et al. DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 2014;7:692–700.  https://doi.org/10.1161/CIRCGENETICS.113.000441.CrossRefPubMedGoogle Scholar
  91. 91.
    Kumar A, Kumar S, Vikram A, et al. Histone and DNA methylation-mediated epigenetic downregulation of endothelial Kruppel-like factor 2 by low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol. 2013;33:1936–42.  https://doi.org/10.1161/ATVBAHA.113.301765.CrossRefPubMedGoogle Scholar
  92. 92.
    Cao Q, Wang X, Jia L, et al. Inhibiting DNA Methylation by 5-Aza-2′-deoxycytidine ameliorates atherosclerosis through suppressing macrophage inflammation. Endocrinology. 2014;155:4925–38.  https://doi.org/10.1210/en.2014-1595.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Dunn J, Qiu H, Kim S, et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest. 2014;124:3187–99.  https://doi.org/10.1172/JCI74792.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Ferri E, Petosa C, McKenna CE. Bromodomains: Structure, function and pharmacology of inhibition. Biochem Pharmacol. 2016;106:1–18.  https://doi.org/10.1016/j.bcp.2015.12.005.CrossRefPubMedGoogle Scholar
  95. 95.
    da Motta LL, Ledaki I, Purshouse K, et al. The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene. 2017;36:122–32.  https://doi.org/10.1038/onc.2016.184.CrossRefPubMedGoogle Scholar
  96. 96.
    Hosin AA, Prasad A, Viiri LE, et al. MicroRNAs in atherosclerosis. J Vasc Res. 2014;51:338–49.  https://doi.org/10.1159/000368193.CrossRefPubMedGoogle Scholar
  97. 97.
    Christopher A, Kaur R, Kaur G, et al. MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect Clin Res. 2016;7:68.  https://doi.org/10.4103/2229-3485.179431.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Araldi E, Chamorro-Jorganes A, van Solingen C, et al. Therapeutic potential of modulating microRNAs in atherosclerotic vascular disease. Curr Vasc Pharmacol. 2013.Google Scholar
  99. 99.
    Welten SMJ, Goossens EAC, Quax PHA, Nossent AY. The multifactorial nature of microRNAs in vascular remodelling. Cardiovasc Res. 2016;110:6–22.  https://doi.org/10.1093/cvr/cvw039.CrossRefPubMedGoogle Scholar
  100. 100.
    Harris TA, Yamakuchi M, Ferlito M, et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA. 2008;105:1516–21.  https://doi.org/10.1073/pnas.0707493105.CrossRefPubMedGoogle Scholar
  101. 101.
    Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15:272–84.  https://doi.org/10.1016/j.devcel.2008.07.008.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    van Solingen C, Seghers L, Bijkerk R, et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med. 2009;13:1577–85.  https://doi.org/10.1111/j.1582-4934.2008.00613.x.CrossRefPubMedGoogle Scholar
  103. 103.
    Voellenkle C, van Rooij J, Guffanti A, et al. Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs. RNA. 2012;18:472–84.  https://doi.org/10.1261/rna.027615.111.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Human miR-221/222 in physiological and atherosclerotic vascular remodeling. Biomed Res Int. 2015;2015:1–18.  https://doi.org/10.1155/2015/354517.CrossRefGoogle Scholar
  105. 105.
    Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100:1164–73.  https://doi.org/10.1161/01.RES.0000265065.26744.17.CrossRefPubMedGoogle Scholar
  106. 106.
    Liu X, Cheng Y, Zhang S, et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104:476–87.  https://doi.org/10.1161/CIRCRESAHA.108.185363.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Janssen HLA, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368:1685–94.  https://doi.org/10.1056/NEJMoa1209026.CrossRefPubMedGoogle Scholar
  108. 108.
    Jäckel S, Kiouptsi K, Lillich M, et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood. 2017;130:542–53.  https://doi.org/10.1182/blood-2016-11-754416.CrossRefPubMedGoogle Scholar
  109. 109.
    Spadoni I, Zagato E, Bertocchi A, et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science. 2015;350:830–4.  https://doi.org/10.1126/science.aad0135.CrossRefPubMedGoogle Scholar
  110. 110.
    Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163:1585–95.  https://doi.org/10.1016/j.cell.2015.11.055.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Roberts AB, Gu X, Buffa JA, et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med. 2018;24:1407–17.  https://doi.org/10.1038/s41591-018-0128-1.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hannover Medical SchoolHannoverGermany

Personalised recommendations