Skip to main content

Risk Factors and Prevention in Light of Atherosclerosis Being a Microvascular Disease

  • Chapter
  • First Online:
Atherosclerosis Pathogenesis and Microvascular Dysfunction

Abstract

Accumulating evidence demonstrates that dysfunctional microvasculature contributes to localized inflammation that precipitates site-specific plaque formation. Given the importance of the blood vessel wall microvasculature in atherosclerosis disease development, we examine how risk factors might contribute to both vasa vasorum and lymphatic dysfunction. In addition, we discuss how microcirculatory endothelium, even more than the parent vessel endothelium, is a likely beneficiary of current common preventative measures and therapies. Therefore, this chapter makes a strong case for impaired microcirculation being a unifying factor underlying many atherosclerosis risk factors .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolinsky H. A proposal linking clearance of circulating lipoproteins to tissue metabolic activity as a basis for understanding atherogenesis. Circ Res. 1980;47:301–11. https://doi.org/10.1161/01.RES.47.3.301.

    Article  CAS  PubMed  Google Scholar 

  2. Sepúlveda C, Palomo I, Fuentes E. Primary and secondary haemostasis changes related to aging. Mech Ageing Dev. 2015;150:46–54. https://doi.org/10.1016/j.mad.2015.08.006.

    Article  CAS  PubMed  Google Scholar 

  3. Sepúlveda C, Palomo I, Fuentes E. Mechanisms of endothelial dysfunction during aging: predisposition to thrombosis. Mech Ageing Dev. 2017;164:91–9. https://doi.org/10.1016/j.mad.2017.04.011.

    Article  CAS  PubMed  Google Scholar 

  4. Segal JB, Moliterno AR. Platelet counts differ by sex, ethnicity, and age in the United States. Ann Epidemiol. 2006;16:123–30. https://doi.org/10.1016/j.annepidem.2005.06.052.

    Article  PubMed  Google Scholar 

  5. Reilly IAG, FitzGerald GA. Eicosenoid biosynthesis and platelet function with advancing age. Thromb Res. 1986;41:545–54. https://doi.org/10.1016/0049-3848(86)91700-7.

    Article  CAS  PubMed  Google Scholar 

  6. Kasjanovová D, Baláz V. Age-related changes in human platelet function in vitro. Mech Ageing Dev. 1986;37:175–82.

    Article  PubMed  Google Scholar 

  7. Zahavi J, Jones NA, Leyton J, et al. Enhanced in vivo platelet “release reaction” in old healthy individuals. Thromb Res. 1980;17:329–36.

    Article  CAS  PubMed  Google Scholar 

  8. Conlan MG, Folsom AR, Finch A, et al. Associations of factor VIII and von Willebrand factor with age, race, sex, and risk factors for atherosclerosis. The Atherosclerosis Risk in Communities (ARIC) Study. Thromb Haemost. 1993;70:380–5.

    CAS  PubMed  Google Scholar 

  9. Favaloro EJ, Soltani S, McDonald J, et al. Reassessment of ABO blood group, sex, and age on laboratory parameters used to diagnose von Willebrand disorder: potential influence on the diagnosis vs the potential association with risk of thrombosis. Am J Clin Pathol. 2005;124:910–7.

    Article  PubMed  Google Scholar 

  10. Shahidi M. Thrombosis and von Willebrand factor. Adv Exp Med Biol. 2017;906:285–306. https://doi.org/10.1007/5584_2016_122.

    Article  CAS  PubMed  Google Scholar 

  11. Blann AD, Bushell D, Davies A, et al. von Willebrand factor, the endothelium and obesity. Int J Obes Relat Metab Disord. 1993;17:723–5.

    CAS  PubMed  Google Scholar 

  12. Ma W-H, Sheng L, Gong H-P, et al. The application of vWF/ADAMTS13 in essential hypertension. Int J Clin Exp Med. 2014;7:5636–42.

    PubMed  PubMed Central  Google Scholar 

  13. Blann AD, Dobrotova M, Kubisz P, McCollum CN. von Willebrand factor, soluble P-selectin, tissue plasminogen activator and plasminogen activator inhibitor in atherosclerosis. Thromb Haemost. 1995;74:626–30.

    Article  CAS  PubMed  Google Scholar 

  14. Blann AD. Assessment of endothelial dysfunction: focus on atherothrombotic disease. Pathophysiol Haemost Thromb. 2003;33:256–61. https://doi.org/10.1159/000083811.

    Article  PubMed  Google Scholar 

  15. Lufkin EG, Fass DN, O’Fallon WM, Bowie EJ. Increased von Willebrand factor in diabetes mellitus. Metabolism. 1979;28:63–6.

    Article  CAS  PubMed  Google Scholar 

  16. Kessler L, Wiesel ML, Attali P, et al. Von Willebrand factor in diabetic angiopathy. Diabetes Metab. 1998;24:327–36.

    CAS  PubMed  Google Scholar 

  17. Seligman BG, Biolo A, Polanczyk CA, et al. Increased plasma levels of endothelin 1 and von Willebrand factor in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2000;23:1395–400.

    Article  CAS  PubMed  Google Scholar 

  18. Mousa SA. Elevation of plasma von Willebrand factor and tumor necrosis factor-a in obese subjects and their reduction by the low molecular weight heparin tinzaparin. Int Angiol. 2005;24:278–81.

    CAS  PubMed  Google Scholar 

  19. Patel SR, Bellary S, Karimzad S, Gherghel D. Overweight status is associated with extensive signs of microvascular dysfunction and cardiovascular risk. Sci Rep. 2016;6:32282. https://doi.org/10.1038/srep32282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holvoet P, Donck J, Landeloos M, et al. Correlation between oxidized low density lipoproteins and von Willebrand factor in chronic renal failure. Thromb Haemost. 1996;76:663–9.

    Article  CAS  PubMed  Google Scholar 

  21. Vianello F, Cella G, Osto E, et al. Coronary microvascular dysfunction due to essential thrombocythemia and policythemia vera: the missing piece in the puzzle of their increased cardiovascular risk? Am J Hematol. 2015;90:109–13. https://doi.org/10.1002/ajh.23881.

    Article  PubMed  Google Scholar 

  22. Chida Y, Steptoe A. Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status: a meta-analysis of prospective evidence. Hypertension. 2010;55:1026–32. https://doi.org/10.1161/HYPERTENSIONAHA.109.146621. (Dallas, Tex 1979).

    Article  CAS  PubMed  Google Scholar 

  23. Wilbert-Lampen U, Leistner D, Greven S, et al. Cardiovascular events during World Cup soccer. N Engl J Med. 2008;358:475–83. https://doi.org/10.1056/NEJMoa0707427.

    Article  CAS  PubMed  Google Scholar 

  24. Lin H, Young DB. Opposing effects of plasma epinephrine and norepinephrine on coronary thrombosis in vivo. Circulation. 1995;91:1135–42.

    Article  CAS  PubMed  Google Scholar 

  25. Ramadan R, Sheps D, Esteves F, et al. Myocardial ischemia during mental stress: role of coronary artery disease burden and vasomotion. J Am Heart Assoc. 2013;2:e000321. https://doi.org/10.1161/JAHA.113.000321.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dakak N, Quyyumi AA, Eisenhofer G, et al. Sympathetically mediated effects of mental stress on the cardiac microcirculation of patients with coronary artery disease. Am J Cardiol. 1995;76:125–30.

    Article  CAS  PubMed  Google Scholar 

  27. Arrighi JA, Burg M, Cohen IS, et al. Myocardial blood-flow response during mental stress in patients with coronary artery disease. Lancet (London, England). 2000;356:310–1. https://doi.org/10.1016/S0140-6736(00)02510-1.

    Article  CAS  Google Scholar 

  28. Born GV, Shafi S, Cusack NJ. Evidence for the acceleration of atherogenesis by circulating norepinephrine. Transplant Proc. 1989;21:3660–1.

    CAS  PubMed  Google Scholar 

  29. Shafi S, Cusack NJ, Born GV. Increased uptake of methylated low-density lipoprotein induced by noradrenaline in carotid arteries of anaesthetized rabbits. Proc R Soc Lond Ser B Biol Sci. 1989;235:289–98. https://doi.org/10.1098/rspb.1989.0001.

    Article  CAS  Google Scholar 

  30. Cardona-Sanclemente LE, Born GV. Adrenaline increases the uptake of low-density lipoproteins in carotid arteries of rabbits. Atherosclerosis. 1992;96:215–8.

    Article  CAS  PubMed  Google Scholar 

  31. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5. https://doi.org/10.1126/science.1092385.

    Article  CAS  PubMed  Google Scholar 

  32. Demers M, Krause DS, Schatzberg D, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci. 2012;109:13076–81. https://doi.org/10.1073/pnas.1200419109.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107:15880–5. https://doi.org/10.1073/pnas.1005743107.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Etulain J, Martinod K, Wong SL, et al. P-selectin promotes neutrophil extracellular trap formation in mice. Blood. 2015;126:242–6. https://doi.org/10.1182/blood-2015-01-624023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349:316–20. https://doi.org/10.1126/science.aaa8064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Megens RTA, Vijayan S, Lievens D, et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost. 2012;107:597–8. https://doi.org/10.1160/TH11-09-0650.

    Article  CAS  PubMed  Google Scholar 

  37. Riegger J, Byrne RA, Joner M, et al. Histopathological evaluation of thrombus in patients presenting with stent thrombosis. A multicenter European study: a report of the prevention of late stent thrombosis by an interdisciplinary global European effort consortium. Eur Heart J. 2016;37:1538–49. https://doi.org/10.1093/eurheartj/ehv419.

    Article  PubMed  Google Scholar 

  38. de Boer O, Li X, Teeling P, et al. Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction. Thromb Haemost. 2013;109:290–7. https://doi.org/10.1160/TH12-06-0425.

    Article  CAS  PubMed  Google Scholar 

  39. Döring Y, Soehnlein O, Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res. 2017;120:736–43. https://doi.org/10.1161/CIRCRESAHA.116.309692.

    Article  CAS  PubMed  Google Scholar 

  40. Schröder AK, Rink L. Neutrophil immunity of the elderly. Mech Ageing Dev. 2003;124:419–25.

    Article  PubMed  Google Scholar 

  41. Martinod K, Witsch T, Erpenbeck L, et al. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J Exp Med. 2017;214:439–58. https://doi.org/10.1084/jem.20160530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Awasthi D, Nagarkoti S, Kumar A, et al. Oxidized LDL induced extracellular trap formation in human neutrophils via TLR-PKC-IRAK-MAPK and NADPH-oxidase activation. Free Radic Biol Med. 2016;93:190–203. https://doi.org/10.1016/j.freeradbiomed.2016.01.004.

    Article  CAS  PubMed  Google Scholar 

  43. Qiu S-L, Zhang H, Tang Q-Y, et al. Neutrophil extracellular traps induced by cigarette smoke activate plasmacytoid dendritic cells. Thorax. 2017;72:1084–93. https://doi.org/10.1136/thoraxjnl-2016-209887.

    Article  PubMed  Google Scholar 

  44. Wang H, Wang Q, Venugopal J, et al. Obesity-induced endothelial dysfunction is prevented by neutrophil extracellular trap inhibition. Sci Rep. 2018;8:4881. https://doi.org/10.1038/s41598-018-23256-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim J-K, Hong C-W, Park MJ, et al. Increased neutrophil extracellular trap formation in uremia is associated with chronic inflammation and prevalent coronary artery disease. J Immunol Res. 2017;2017:8415179. https://doi.org/10.1155/2017/8415179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Y, Xiao Y, Zhong L, et al. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with -cell autoimmunity in patients with type 1 diabetes. Diabetes. 2014;63:4239–48. https://doi.org/10.2337/db14-0480.

    Article  CAS  PubMed  Google Scholar 

  47. Menegazzo L, Ciciliot S, Poncina N, et al. NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetol. 2015;52:497–503. https://doi.org/10.1007/s00592-014-0676-x.

    Article  CAS  PubMed  Google Scholar 

  48. Fadini GP, Menegazzo L, Rigato M, et al. NETosis delays diabetic wound healing in mice and humans. Diabetes. 2016;65:1061–71. https://doi.org/10.2337/db15-0863.

    Article  CAS  PubMed  Google Scholar 

  49. Menegazzo L, Scattolini V, Cappellari R, et al. The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetol. 2018;55:593–601. https://doi.org/10.1007/s00592-018-1129-8.

    Article  CAS  PubMed  Google Scholar 

  50. Park SK, Adar SD, O’Neill MS, et al. Long-term exposure to air pollution and type 2 diabetes mellitus in a multiethnic cohort. Am J Epidemiol. 2015;181:327–36. https://doi.org/10.1093/aje/kwu280.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Krämer U, Herder C, Sugiri D, et al. Traffic-related air pollution and incident type 2 diabetes: results from the SALIA cohort study. Environ Health Perspect. 2010;118:1273–9. https://doi.org/10.1289/ehp.0901689.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Weinmayr G, Hennig F, Fuks K, et al. Long-term exposure to fine particulate matter and incidence of type 2 diabetes mellitus in a cohort study: effects of total and traffic-specific air pollution. Environ Heal. 2015;14:53. https://doi.org/10.1186/s12940-015-0031-x.

    Article  CAS  Google Scholar 

  53. Coogan PF, White LF, Jerrett M, et al. Air pollution and incidence of hypertension and diabetes mellitus in black women living in Los Angeles. Circulation. 2012;125:767–72. https://doi.org/10.1161/CIRCULATIONAHA.111.052753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Clark C, Sbihi H, Tamburic L, et al. Association of long-term exposure to transportation noise and traffic-related air pollution with the incidence of diabetes: a prospective cohort study. Environ Health Perspect. 2017;125:087025. https://doi.org/10.1289/EHP1279.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Killin LOJ, Starr JM, Shiue IJ, Russ TC. Environmental risk factors for dementia: a systematic review. BMC Geriatr. 2016;16:175. https://doi.org/10.1186/s12877-016-0342-y.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chen H, Kwong JC, Copes R, et al. Exposure to ambient air pollution and the incidence of dementia: a population-based cohort study. Environ Int. 2017;108:271–7. https://doi.org/10.1016/j.envint.2017.08.020.

    Article  CAS  PubMed  Google Scholar 

  57. Tzivian L, Dlugaj M, Winkler A, et al. Long-term air pollution and traffic noise exposures and mild cognitive impairment in older adults: a cross-sectional analysis of the Heinz Nixdorf recall study. Environ Health Perspect. 2016;124:1361–8. https://doi.org/10.1289/ehp.1509824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Robertson S, Miller MR. Ambient air pollution and thrombosis. Part Fibre Toxicol. 2018;15:1. https://doi.org/10.1186/s12989-017-0237-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hajat A, Allison M, Diez-Roux AV, et al. Long-term exposure to air pollution and markers of inflammation, coagulation, and endothelial activation: a repeat-measures analysis in the Multi-Ethnic Study of Atherosclerosis (MESA). Epidemiology. 2015;26:310–20. https://doi.org/10.1097/EDE.0000000000000267.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jacobs L, Emmerechts J, Mathieu C, et al. Air pollution related prothrombotic changes in persons with diabetes. Environ Health Perspect. 2010;118:191–6. https://doi.org/10.1289/ehp.0900942.

    Article  CAS  PubMed  Google Scholar 

  61. Cozzi E, Wingard CJ, Cascio WE, et al. Effect of ambient particulate matter exposure on hemostasis. Transl Res. 2007;149:324–32. https://doi.org/10.1016/j.trsl.2006.12.009.

    Article  CAS  PubMed  Google Scholar 

  62. Radomski A, Jurasz P, Alonso-Escolano D, et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol. 2005;146:882–93. https://doi.org/10.1038/sj.bjp.0706386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ghio AJ, Hall A, Bassett MA, et al. Exposure to concentrated ambient air particles alters hematologic indices in humans. Inhal Toxicol. 2003;15:1465–78. https://doi.org/10.1080/08958370390249111.

    Article  CAS  PubMed  Google Scholar 

  64. Lucking AJ, Lundback M, Mills NL, et al. Diesel exhaust inhalation increases thrombus formation in man. Eur Heart J. 2008;29:3043–51. https://doi.org/10.1093/eurheartj/ehn464.

    Article  CAS  PubMed  Google Scholar 

  65. Lucking AJ, Lundbäck M, Barath SL, et al. Particle traps prevent adverse vascular and prothrombotic effects of diesel engine exhaust inhalation in men. Circulation. 2011;123:1721–8. https://doi.org/10.1161/CIRCULATIONAHA.110.987263.

    Article  CAS  PubMed  Google Scholar 

  66. Nemmar A, Hoylaerts MF, Hoet PHM, Nemery B. Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects. Toxicol Lett. 2004;149:243–53. https://doi.org/10.1016/j.toxlet.2003.12.061.

    Article  CAS  PubMed  Google Scholar 

  67. Wu S, Deng F, Wei H, et al. Chemical constituents of ambient particulate air pollution and biomarkers of inflammation, coagulation and homocysteine in healthy adults: a prospective panel study. Part Fibre Toxicol. 2012;9:49. https://doi.org/10.1186/1743-8977-9-49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Franchini M, Capra F, Targher G, et al. Relationship between ABO blood group and von Willebrand factor levels: from biology to clinical implications. Thromb J. 2007;5:14. https://doi.org/10.1186/1477-9560-5-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Smith NL, Chen M-H, Dehghan A, et al. Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium. Circulation. 2010;121:1382–92. https://doi.org/10.1161/CIRCULATIONAHA.109.869156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Miller CH, Haff E, Platt SJ, et al. Measurement of von Willebrand factor activity: relative effects of ABO blood type and race. J Thromb Haemost. 2003;1:2191–7.

    Article  CAS  PubMed  Google Scholar 

  71. Song J, Chen F, Campos M, et al. Quantitative influence of ABO blood groups on factor VIII and its ratio to von Willebrand factor, novel observations from an ARIC study of 11,673 subjects. PLoS ONE. 2015;10:e0132626. https://doi.org/10.1371/journal.pone.0132626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gill JC, Endres-Brooks J, Bauer PJ, et al. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood. 1987;69:1691–5.

    CAS  PubMed  Google Scholar 

  73. He M, Wolpin B, Rexrode K, et al. ABO blood group and risk of coronary heart disease in two prospective cohort studies. Arterioscler Thromb Vasc Biol. 2012;32:2314–20. https://doi.org/10.1161/ATVBAHA.112.248757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu O, Bayoumi N, Vickers MA, Clark P. ABO(H) blood groups and vascular disease: a systematic review and meta-analysis. J Thromb Haemost. 2008;6:62–9. https://doi.org/10.1111/j.1538-7836.2007.02818.x.

    Article  CAS  PubMed  Google Scholar 

  75. Tanis B, Algra A, van der Graaf Y, et al. Procoagulant factors and the risk of myocardial infarction in young women. Eur J Haematol. 2006;77:67–73. https://doi.org/10.1111/j.1600-0609.2006.00656.x.

    Article  CAS  PubMed  Google Scholar 

  76. Kole TM, Suthahar N, Damman K, De Boer RA. ABO blood group and cardiovascular outcomes in the general population: a meta-analysis. Eur J Hear Fail. 2017;19:175.

    Google Scholar 

  77. Horne BD, Muhlestein JB, Carlquist JF, et al. Interaction of genetic variation in the ABO locus and short-term exposure to elevations in fine particulate matter air pollution differentially affects associations with acute coronary events. Am Hear Assoc Sci Sess Meet Anaheim, CA;2017.

    Google Scholar 

  78. Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–76. https://doi.org/10.1016/j.cell.2015.02.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jäckel S, Kiouptsi K, Lillich M, et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood. 2017;130:542–53. https://doi.org/10.1182/blood-2016-11-754416.

    Article  CAS  PubMed  Google Scholar 

  80. Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165:111–24. https://doi.org/10.1016/j.cell.2016.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhu W, Wang Z, Tang WHW, Hazen SL. Gut microbe-generated trimethylamine n-oxide from dietary choline is prothrombotic in subjects. Circulation. 2017;135:1671–3. https://doi.org/10.1161/CIRCULATIONAHA.116.025338.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-Oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J Am Heart Assoc. 2016;5. https://doi.org/10.1161/JAHA.115.002767.

  83. Brown JM, Hazen SL. Microbial modulation of cardiovascular disease. Nat Rev Microbiol. 2018;16:171–81. https://doi.org/10.1038/nrmicro.2017.149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Klein LW. Cigarette smoking, atherosclerosis and the coronary hemodynamic response: a unifying hypothesis. J Am Coll Cardiol. 1984;4:972–4.

    Article  CAS  PubMed  Google Scholar 

  85. Brook RD, Brook JR, Urch B, et al. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation. 2002;105:1534–6.

    Article  CAS  PubMed  Google Scholar 

  86. Goel A, Su B, Flavahan S, et al. Increased endothelial exocytosis and generation of endothelin-1 contributes to constriction of aged arteries. Circ Res. 2010;107:242–51. https://doi.org/10.1161/CIRCRESAHA.109.210229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Donato AJ, Gano LB, Eskurza I, et al. Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol. 2009;297:H425–32. https://doi.org/10.1152/ajpheart.00689.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Weil BR, Westby CM, Van Guilder GP, et al. Enhanced endothelin-1 system activity with overweight and obesity. Am J Physiol Heart Circ Physiol. 2011;301:H689–95. https://doi.org/10.1152/ajpheart.00206.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Westby CM, Weil BR, Greiner JJ, et al. Endothelin-1 vasoconstriction and the age-related decline in endothelium-dependent vasodilatation in men. Clin Sci (Lond). 2011;120:485–91. https://doi.org/10.1042/CS20100475.

    Article  CAS  Google Scholar 

  90. Van Guilder GP, Stauffer BL, Greiner JJ, Desouza CA. Impaired endothelium-dependent vasodilation in overweight and obese adult humans is not limited to muscarinic receptor agonists. Am J Physiol Heart Circ Physiol. 2008;294:H1685–92. https://doi.org/10.1152/ajpheart.01281.2007.

    Article  CAS  PubMed  Google Scholar 

  91. Schinzari F, Iantorno M, Campia U, et al. Vasodilator responses and endothelin-dependent vasoconstriction in metabolically healthy obesity and the metabolic syndrome. Am J Physiol Endocrinol Metab. 2015;309:E787–92. https://doi.org/10.1152/ajpendo.00278.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Langrish JP, Lundbäck M, Mills NL, et al. Contribution of endothelin 1 to the vascular effects of diesel exhaust inhalation in humans. Hypertens. 2009;54:910–5. https://doi.org/10.1161/HYPERTENSIONAHA.109.135947. (Dallas, Tex 1979).

    Article  CAS  PubMed  Google Scholar 

  93. Cardillo C, Nambi SS, Kilcoyne CM, et al. Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation. 1999;100:820–5.

    Article  CAS  PubMed  Google Scholar 

  94. Cardillo C, Kilcoyne CM, Cannon RO, Panza JA. Increased activity of endogenous endothelin in patients with hypercholesterolemia. J Am Coll Cardiol. 2000;36:1483–8.

    Article  CAS  PubMed  Google Scholar 

  95. Cardillo C, Campia U, Bryant MB, Panza JA. Increased activity of endogenous endothelin in patients with type II diabetes mellitus. Circulation. 2002;106:1783–7.

    Article  CAS  PubMed  Google Scholar 

  96. Xie Y, Fan Y, Xu Q. Vascular regeneration by stem/progenitor cells. Arterioscler Thromb Vasc Biol. 2016;36:e33–40. https://doi.org/10.1161/ATVBAHA.116.307303.

    Article  CAS  PubMed  Google Scholar 

  97. Lee PSS, Poh KK. Endothelial progenitor cells in cardiovascular diseases. World J Stem Cells. 2014;6:355–66. https://doi.org/10.4252/wjsc.v6.i3.355.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hill JM, Zalos G, Halcox JPJ, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348:593–600. https://doi.org/10.1056/NEJMoa022287.

    Article  PubMed  Google Scholar 

  99. Schmidt-Lucke C, Rössig L, Fichtlscherer S, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005;111:2981–7. https://doi.org/10.1161/CIRCULATIONAHA.104.504340.

    Article  PubMed  Google Scholar 

  100. Werner N, Wassmann S, Ahlers P, et al. Endothelial progenitor cells correlate with endothelial function in patients with coronary artery disease. Basic Res Cardiol. 2007;102:565–71. https://doi.org/10.1007/s00395-007-0680-1.

    Article  PubMed  Google Scholar 

  101. O’Toole TE, Hellmann J, Wheat L, et al. Episodic exposure to fine particulate air pollution decreases circulating levels of endothelial progenitor cells. Circ Res. 2010;107:200–3. https://doi.org/10.1161/CIRCRESAHA.110.222679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Niu J, Liberda EN, Qu S, et al. The role of metal components in the cardiovascular effects of PM2.5. PLoS One. 2013;8:e83782. https://doi.org/10.1371/journal.pone.0083782.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cui Y, Sun Q, Liu Z. Ambient particulate matter exposure and cardiovascular diseases: a focus on progenitor and stem cells. J Cell Mol Med. 2016;20:782–93. https://doi.org/10.1111/jcmm.12822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Heida N-M, Müller J-P, Cheng I-F, et al. Effects of obesity and weight loss on the functional properties of early outgrowth endothelial progenitor cells. J Am Coll Cardiol. 2010;55:357–67. https://doi.org/10.1016/j.jacc.2009.09.031.

    Article  CAS  PubMed  Google Scholar 

  105. Tepper OM, Galiano RD, Capla JM, et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation. 2002;106:2781–6.

    Article  PubMed  Google Scholar 

  106. Fadini GP, Miorin M, Facco M, et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol. 2005;45:1449–57. https://doi.org/10.1016/j.jacc.2004.11.067.

    Article  CAS  PubMed  Google Scholar 

  107. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89:E1–7.

    Article  CAS  PubMed  Google Scholar 

  108. Aicher A, Heeschen C, Mildner-Rihm C, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med. 2003;9:1370–6. https://doi.org/10.1038/nm948.

    Article  CAS  PubMed  Google Scholar 

  109. Lin C-P, Lin F-Y, Huang P-H, et al. Endothelial progenitor cell dysfunction in cardiovascular diseases: role of reactive oxygen species and inflammation. Biomed Res Int. 2013;2013:845037. https://doi.org/10.1155/2013/845037.

    Article  CAS  PubMed  Google Scholar 

  110. Bigarella CL, Liang R, Ghaffari S. Stem cells and the impact of ROS signaling. Development. 2014;141:4206–18. https://doi.org/10.1242/dev.107086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hu Y, Davison F, Zhang Z, Xu Q. Endothelial replacement and angiogenesis in arteriosclerotic lesions of allografts are contributed by circulating progenitor cells. Circulation. 2003;108:3122–7. https://doi.org/10.1161/01.CIR.0000105722.96112.67.

    Article  PubMed  Google Scholar 

  112. Zhang L, Issa Bhaloo S, Chen T, et al. Role of resident stem cells in vessel formation and arteriosclerosis. Circ Res. 2018;122:1608–24. https://doi.org/10.1161/CIRCRESAHA.118.313058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wong MM, Chen Y, Margariti A, et al. Macrophages Control vascular stem/progenitor cell plasticity through tumor necrosis factor-α-mediated nuclear factor-κB activation. Arterioscler Thromb Vasc Biol. 2014;34:635–43. https://doi.org/10.1161/ATVBAHA.113.302568.

    Article  CAS  PubMed  Google Scholar 

  114. Tsai T-N, Kirton JP, Campagnolo P, et al. Contribution of stem cells to neointimal formation of decellularized vessel grafts in a novel mouse model. Am J Pathol. 2012;181:362–73. https://doi.org/10.1016/j.ajpath.2012.03.021.

    Article  CAS  PubMed  Google Scholar 

  115. Torsney E, Xu Q. Resident vascular progenitor cells. J Mol Cell Cardiol. 2011;50:304–11. https://doi.org/10.1016/j.yjmcc.2010.09.006.

    Article  CAS  PubMed  Google Scholar 

  116. Tousoulis D, Antoniades C, Tentolouris C, et al. Effects of combined administration of vitamins C and E on reactive hyperemia and inflammatory process in chronic smokers. Atherosclerosis. 2003;170:261–7.

    Article  CAS  PubMed  Google Scholar 

  117. van Herpen-Broekmans WMR, Klöpping-Ketelaars IAA, Bots ML, et al. Serum carotenoids and vitamins in relation to markers of endothelial function and inflammation. Eur J Epidemiol. 2004;19:915–21.

    Article  PubMed  Google Scholar 

  118. Rashidi B, Hoseini Z, Sahebkar A, Mirzaei H. Anti-atherosclerotic effects of vitamins D and E in suppression of atherogenesis. J Cell Physiol. 2017;232:2968–76. https://doi.org/10.1002/jcp.25738.

    Article  CAS  PubMed  Google Scholar 

  119. Badimon L, Padró T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur Hear journal Acute Cardiovasc care. 2012;1:60–74. https://doi.org/10.1177/2048872612441582.

    Article  Google Scholar 

  120. Gonzalez ER. Antiplatelet therapy in atherosclerotic cardiovascular disease. Clin Ther. 1998;20(Suppl B):B18–41.

    Article  PubMed  Google Scholar 

  121. Mekaj YH, Daci FT, Mekaj AY. New insights into the mechanisms of action of aspirin and its use in the prevention and treatment of arterial and venous thromboembolism. Ther Clin Risk Manag. 2015;11:1449–56. https://doi.org/10.2147/TCRM.S92222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Phillips DR, Conley PB, Sinha U, Andre P. Therapeutic approaches in arterial thrombosis. J Thromb Haemost. 2005;3:1577–89. https://doi.org/10.1111/j.1538-7836.2005.01418.x.

    Article  CAS  PubMed  Google Scholar 

  123. Savi P, Herbert J-M. Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis. Semin Thromb Hemost. 2005;31:174–83. https://doi.org/10.1055/s-2005-869523.

    Article  CAS  PubMed  Google Scholar 

  124. Reaume KT, Regal RE, Dorsch MP. Indications for dual antiplatelet therapy with aspirin and clopidogrel: evidence-based recommendations for use. Ann Pharmacother. 2008;42:550–7. https://doi.org/10.1345/aph.1K433.

    Article  CAS  PubMed  Google Scholar 

  125. Giordano A, Musumeci G, D’Angelillo A, et al. Effects of glycoprotein iib/iiia antagonists: anti platelet aggregation and beyond. Curr Drug Metab. 2016;17:194–203.

    Article  CAS  PubMed  Google Scholar 

  126. Morrow DA, Braunwald E, Bonaca MP, et al. Vorapaxar in the secondary prevention of atherothrombotic events. N Engl J Med. 2012;366:1404–13. https://doi.org/10.1056/NEJMoa1200933.

    Article  CAS  PubMed  Google Scholar 

  127. Gresele P, Momi S. Inhibitors of the interaction between von Willebrand factor and platelet GPIb/IX/V. Handb Exp Pharmacol. 2012;287–309. https://doi.org/10.1007/978-3-642-29423-5_12.

    Chapter  Google Scholar 

  128. Gresele P, Momi S. Pharmacologic profile and therapeutic potential of NCX 4016, a nitric oxide-releasing aspirin, for cardiovascular disorders. Cardiovasc Drug Rev. 2006;24:148–68. https://doi.org/10.1111/j.1527-3466.2006.00148.x.

    Article  CAS  PubMed  Google Scholar 

  129. Gayle RB, Maliszewski CR, Gimpel SD, et al. Inhibition of platelet function by recombinant soluble ecto-ADPase/CD39. J Clin Invest. 1998;101:1851–9. https://doi.org/10.1172/JCI1753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wiysonge CS, Volmink J, Opie LH. Beta-blockers and the treatment of hypertension: it is time to move on. Cardiovasc J Afr. 2007;18:351–2.

    PubMed  PubMed Central  Google Scholar 

  131. Maguire JJ, Davenport AP. Endothelin receptors and their antagonists. Semin Nephrol. 2015;35:125–36. https://doi.org/10.1016/j.semnephrol.2015.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Herman LL, Bhimji SS. Angiotensin Converting Enzyme Inhibitors (ACEI); 2018.

    Google Scholar 

  133. Laufs U, Gertz K, Huang P, et al. Atorvastatin upregulates type III nitric oxide synthase in thrombocytes, decreases platelet activation, and protects from cerebral ischemia in normocholesterolemic mice. Stroke. 2000;31:2442–9.

    Article  CAS  PubMed  Google Scholar 

  134. Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011;162:597–605. https://doi.org/10.1016/j.ahj.2011.06.012.

    Article  CAS  PubMed  Google Scholar 

  135. Ridker PM, Rifai N, Clearfield M, et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med. 2001;344:1959–65. https://doi.org/10.1056/NEJM200106283442601.

    Article  CAS  PubMed  Google Scholar 

  136. Musial J, Undas A, Gajewski P, et al. Anti-inflammatory effects of simvastatin in subjects with hypercholesterolemia. Int J Cardiol. 2001;77:247–53.

    Article  CAS  PubMed  Google Scholar 

  137. Ridker PM. Inflammatory biomarkers, statins, and the risk of stroke: cracking a clinical conundrum. Circulation. 2002;105:2583–5.

    Article  PubMed  Google Scholar 

  138. Ridker PM, Rifai N, Pfeffer MA, et al. Long-term effects of pravastatin on plasma concentration of C-reactive protein. The Cholesterol and Recurrent Events (CARE) Investigators. Circulation. 1999;100:230–5.

    Article  CAS  PubMed  Google Scholar 

  139. Ridker PM, Cushman M, Stampfer MJ, et al. Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease. Circulation. 1998;97:425–8.

    Article  CAS  PubMed  Google Scholar 

  140. Ridker PM, Cannon CP, Morrow D, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005;352:20–8. https://doi.org/10.1056/NEJMoa042378.

    Article  CAS  PubMed  Google Scholar 

  141. Zhou Q, Liao JK. Pleiotropic effects of statins. - Basic research and clinical perspectives -. Circ J. 2010;74:818–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Scalia R, Stalker TJ. Microcirculation as a target for the anti-inflammatory properties of statins. Microcirculation. 2002;9:431–42. https://doi.org/10.1038/sj.mn.7800168.

    Article  CAS  PubMed  Google Scholar 

  143. Huang PL, Huang Z, Mashimo H, et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 1995;377:239–42. https://doi.org/10.1038/377239a0.

    Article  CAS  PubMed  Google Scholar 

  144. Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet (London, England). 1987;2:1057–8.

    Article  CAS  Google Scholar 

  145. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci. 1991;88:4651–5. https://doi.org/10.1073/pnas.88.11.4651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Laufs U, La Fata V, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation. 1998;97:1129–35.

    Article  CAS  PubMed  Google Scholar 

  147. Laufs U, La Fata V, Liao JK. Inhibition of 3-Hydroxy-3-methylglutaryl (HMG)-CoA reductase blocks hypoxia-mediated down-regulation of endothelial nitric oxide synthase. J Biol Chem. 1997;272:31725–9. https://doi.org/10.1074/jbc.272.50.31725.

    Article  CAS  PubMed  Google Scholar 

  148. Wagner AH, Köhler T, Rückschloss U, et al. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol. 2000;20:61–9.

    Article  CAS  PubMed  Google Scholar 

  149. Davignon J, Laaksonen R. Low-density lipoprotein-independent effects of statins. Curr Opin Lipidol. 1999;10:543–59.

    Article  CAS  PubMed  Google Scholar 

  150. Pruefer D, Scalia R, Lefer AM. Simvastatin inhibits leukocyte-endothelial cell interactions and protects against inflammatory processes in normocholesterolemic rats. Arterioscler Thromb Vasc Biol. 1999;19:2894–900.

    Article  CAS  PubMed  Google Scholar 

  151. Mueck AO, Seeger H, Wallwiener D. Further evidence for direct vascular actions of statins: effect on endothelial nitric oxide synthase and adhesion molecules. Exp Clin Endocrinol Diabetes. 2001;109:181–3. https://doi.org/10.1055/s-2001-14843.

    Article  CAS  PubMed  Google Scholar 

  152. Rezaie-Majd A, Prager GW, Bucek RA, et al. Simvastatin reduces the expression of adhesion molecules in circulating monocytes from hypercholesterolemic patients. Arterioscler Thromb Vasc Biol. 2003;23:397–403. https://doi.org/10.1161/01.ATV.0000059384.34874.F0.

    Article  CAS  PubMed  Google Scholar 

  153. Weitz-Schmidt G, Welzenbach K, Brinkmann V, et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med. 2001;7:687–92. https://doi.org/10.1038/89058.

    Article  CAS  PubMed  Google Scholar 

  154. Peng H, Luo P, Li Y, et al. Simvastatin alleviates hyperpermeability of glomerular endothelial cells in early-stage diabetic nephropathy by inhibition of RhoA/ROCK1. PLoS ONE. 2013;8:e80009. https://doi.org/10.1371/journal.pone.0080009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Huhle G, Abletshauser C, Mayer N, et al. Reduction of platelet activity markers in type II hypercholesterolemic patients by a HMG-CoA-reductase inhibitor. Thromb Res. 1999;95:229–34.

    Article  CAS  PubMed  Google Scholar 

  156. Hale LP, Craver KT, Berrier AM, et al. Combination of fosinopril and pravastatin decreases platelet response to thrombin receptor agonist in monkeys. Arterioscler Thromb Vasc Biol. 1998;18:1643–6.

    Article  CAS  PubMed  Google Scholar 

  157. Lacoste L, Lam JY, Hung J, et al. Hyperlipidemia and coronary disease. Correction of the increased thrombogenic potential with cholesterol reduction. Circulation. 1995;92:3172–7.

    Article  CAS  PubMed  Google Scholar 

  158. Park A, Barrera-Ramirez J, Ranasinghe I, et al. Use of statins to augment progenitor cell function in preclinical and clinical studies of regenerative therapy: a systematic review. Stem Cell Rev. 2016;12:327–39. https://doi.org/10.1007/s12015-016-9647-7.

    Article  CAS  Google Scholar 

  159. Dimmeler S, Aicher A, Vasa M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest. 2001;108:391–7. https://doi.org/10.1172/JCI13152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Landmesser U, Engberding N, Bahlmann FH, et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation. 2004;110:1933–9. https://doi.org/10.1161/01.CIR.0000143232.67642.7A.

    Article  CAS  PubMed  Google Scholar 

  161. Hristov M, Fach C, Becker C, et al. Reduced numbers of circulating endothelial progenitor cells in patients with coronary artery disease associated with long-term statin treatment. Atherosclerosis. 2007;192:413–20. https://doi.org/10.1016/j.atherosclerosis.2006.05.031.

    Article  CAS  PubMed  Google Scholar 

  162. Thompson PD, Buchner D, Pina IL, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical. Circulation. 2003;107:3109–16. https://doi.org/10.1161/01.CIR.0000075572.40158.77.

    Article  PubMed  Google Scholar 

  163. Leon AS, Franklin BA, Costa F, et al. Cardiac rehabilitation and secondary prevention of coronary heart disease: an American Heart Association scientific statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention) and the Council on Nut. Circulation. 2005;111:369–76. https://doi.org/10.1161/01.CIR.0000151788.08740.5C.

    Article  PubMed  Google Scholar 

  164. Taylor RS, Brown A, Ebrahim S, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med. 2004;116:682–92. https://doi.org/10.1016/j.amjmed.2004.01.009.

    Article  PubMed  Google Scholar 

  165. Lawler PR, Filion KB, Eisenberg MJ. Efficacy of exercise-based cardiac rehabilitation post-myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am Heart J. 2011;162:571–584.e2. https://doi.org/10.1016/j.ahj.2011.07.017.

    Article  PubMed  Google Scholar 

  166. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136:493–503.

    Article  PubMed  Google Scholar 

  167. Ross R, Dagnone D, Jones PJ, et al. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann Intern Med. 2000;133:92–103.

    Article  CAS  PubMed  Google Scholar 

  168. Ross R, Janssen I, Dawson J, et al. Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obes Res. 2004;12:789–98. https://doi.org/10.1038/oby.2004.95.

    Article  PubMed  Google Scholar 

  169. Irwin ML, Yasui Y, Ulrich CM, et al. Effect of exercise on total and intra-abdominal body fat in postmenopausal women: a randomized controlled trial. JAMA. 2003;289:323–30.

    Article  PubMed  Google Scholar 

  170. Kodama S, Tanaka S, Saito K, et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch Intern Med. 2007;167:999–1008. https://doi.org/10.1001/archinte.167.10.999.

    Article  CAS  PubMed  Google Scholar 

  171. Pearson MJ, Smart NA. Effect of exercise training on endothelial function in heart failure patients: a systematic review meta-analysis. Int J Cardiol. 2017;231:234–43. https://doi.org/10.1016/j.ijcard.2016.12.145.

    Article  CAS  PubMed  Google Scholar 

  172. Ashor AW, Lara J, Siervo M, et al. Exercise modalities and endothelial function: a systematic review and dose-response meta-analysis of randomized controlled trials. Sports Med. 2015;45:279–96. https://doi.org/10.1007/s40279-014-0272-9.

    Article  PubMed  Google Scholar 

  173. Laufs U, Werner N, Link A, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation. 2004;109:220–6. https://doi.org/10.1161/01.CIR.0000109141.48980.37.

    Article  CAS  PubMed  Google Scholar 

  174. Rehman J, Li J, Parvathaneni L, et al. Exercise acutely increases circulating endothelial progenitor cells and monocyte-/macrophage-derived angiogenic cells. J Am Coll Cardiol. 2004;43:2314–8. https://doi.org/10.1016/j.jacc.2004.02.049.

    Article  PubMed  Google Scholar 

  175. De Biase C, De Rosa R, Luciano R, et al. Effects of physical activity on endothelial progenitor cells (EPCs). Front Physiol. 2013;4:414. https://doi.org/10.3389/fphys.2013.00414.

    Article  PubMed  Google Scholar 

  176. Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol. 2005;45:1563–9. https://doi.org/10.1016/j.jacc.2004.12.077.

    Article  CAS  PubMed  Google Scholar 

  177. Woods JA, Wilund KR, Martin SA, Kistler BM. Exercise, inflammation and aging. Aging Dis. 2012;3:130–40.

    PubMed  Google Scholar 

  178. Chen Y-W, Apostolakis S, Lip GYH. Exercise-induced changes in inflammatory processes: implications for thrombogenesis in cardiovascular disease. Ann Med. 2014;46:439–55. https://doi.org/10.3109/07853890.2014.927713.

    Article  CAS  PubMed  Google Scholar 

  179. Gomez-Cabrera M-C, Domenech E, Viña J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44:126–31. https://doi.org/10.1016/j.freeradbiomed.2007.02.001.

    Article  CAS  PubMed  Google Scholar 

  180. de Sousa CV, Sales MM, Rosa TS, et al. The antioxidant effect of exercise: a systematic review and meta-analysis. Sport Med. 2017;47:277–93. https://doi.org/10.1007/s40279-016-0566-1.

    Article  Google Scholar 

  181. Posthuma JJ, van der Meijden PEJ, Ten Cate H, Spronk HMH. Short- and Long-term exercise induced alterations in haemostasis: a review of the literature. Blood Rev. 2015;29:171–8. https://doi.org/10.1016/j.blre.2014.10.005.

    Article  PubMed  Google Scholar 

  182. Beiter T, Fragasso A, Hudemann J, et al. Neutrophils release extracellular DNA traps in response to exercise. J Appl Physiol. 2014;117:325–33. https://doi.org/10.1152/japplphysiol.00173.2014.

    Article  CAS  PubMed  Google Scholar 

  183. Beiter T, Hoene M, Prenzler F, et al. Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks. Exerc Immunol Rev. 2015;21:42–57.

    PubMed  Google Scholar 

  184. Desai P, Williams AG, Prajapati P, Downey HF. Lymph flow in instrumented dogs varies with exercise intensity. Lymphat Res Biol. 2010;8:143–8. https://doi.org/10.1089/lrb.2009.0029.

    Article  PubMed  Google Scholar 

  185. Boulé NG, Haddad E, Kenny GP, et al. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286:1218–27.

    Article  PubMed  Google Scholar 

  186. Röhling M, Herder C, Roden M, et al. Effects of long-term exercise interventions on glycaemic control in type 1 and type 2 diabetes: a systematic review. Exp Clin Endocrinol Diabetes. 2016;124:487–94. https://doi.org/10.1055/s-0042-106293.

    Article  CAS  PubMed  Google Scholar 

  187. Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia?: a systematic review and meta-analysis of longitudinal studies. BMC Public Health. 2014;14:510. https://doi.org/10.1186/1471-2458-14-510.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Laver K, Dyer S, Whitehead C, et al. Interventions to delay functional decline in people with dementia: a systematic review of systematic reviews. BMJ Open. 2016;6:e010767. https://doi.org/10.1136/bmjopen-2015-010767.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Hernández SSS, Sandreschi PF, da Silva FC, et al. What are the benefits of exercise for Alzheimer’s disease? A systematic review of the past 10 years. J Aging Phys Act. 2015;23:659–68. https://doi.org/10.1123/japa.2014-0180.

    Article  PubMed  Google Scholar 

  190. Pitkälä KH, Pöysti MM, Laakkonen M-L, et al. Effects of the finnish Alzheimer disease exercise trial (FINALEX): a randomized controlled trial. JAMA Intern Med. 2013;173:894–901. https://doi.org/10.1001/jamainternmed.2013.359.

    Article  PubMed  Google Scholar 

  191. Jick H, Zornberg GL, Jick SS, et al. Statins and the risk of dementia. Lancet (London, England). 2000;356:1627–31.

    Article  CAS  Google Scholar 

  192. Chu C-S, Tseng P-T, Stubbs B, et al. Use of statins and the risk of dementia and mild cognitive impairment: a systematic review and meta-analysis. Sci Rep. 2018;8:5804. https://doi.org/10.1038/s41598-018-24248-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zissimopoulos JM, Barthold D, Brinton RD, Joyce G. Sex and race differences in the association between statin use and the incidence of Alzheimer disease. JAMA Neurol. 2017;74:225–32. https://doi.org/10.1001/jamaneurol.2016.3783.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Koelwyn GJ, Quail DF, Zhang X, et al. Exercise-dependent regulation of the tumour microenvironment. Nat Rev Cancer. 2017;17:620–32. https://doi.org/10.1038/nrc.2017.78.

    Article  CAS  PubMed  Google Scholar 

  195. Demierre M-F, Higgins PDR, Gruber SB, et al. Statins and cancer prevention. Nat Rev Cancer. 2005;5:930–42. https://doi.org/10.1038/nrc1751.

    Article  CAS  PubMed  Google Scholar 

  196. Mei Z, Liang M, Li L, et al. Effects of statins on cancer mortality and progression: A systematic review and meta-analysis of 95 cohorts including 1,111,407 individuals. Int J Cancer. 2017;140:1068–81. https://doi.org/10.1002/ijc.30526.

    Article  CAS  PubMed  Google Scholar 

  197. Kyu HH, Bachman VF, Alexander LT, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ. 2016;354:i3857.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Al-Zahrani MS, Borawski EA, Bissada NF. Periodontitis and three health-enhancing behaviors: maintaining normal weight, engaging in recommended level of exercise, and consuming a high-quality diet. J Periodontol. 2005;76:1362–6. https://doi.org/10.1902/jop.2005.76.8.1362.

    Article  PubMed  Google Scholar 

  199. Estanislau IMG, Terceiro IRC, Lisboa MRP, et al. Pleiotropic effects of statins on the treatment of chronic periodontitis–a systematic review. Br J Clin Pharmacol. 2015;79:877–85. https://doi.org/10.1111/bcp.12564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hallsworth K, Fattakhova G, Hollingsworth KG, et al. Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut. 2011;60:1278–83. https://doi.org/10.1136/gut.2011.242073.

    Article  PubMed  Google Scholar 

  201. Hashida R, Kawaguchi T, Bekki M, et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: a systematic review. J Hepatol. 2017;66:142–52. https://doi.org/10.1016/j.jhep.2016.08.023.

    Article  PubMed  Google Scholar 

  202. Athyros VG, Alexandrides TK, Bilianou H, et al. The use of statins alone, or in combination with pioglitazone and other drugs, for the treatment of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and related cardiovascular risk. An expert panel statement. Metabolism. 2017;71:17–32. https://doi.org/10.1016/j.metabol.2017.02.014.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Haverich .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haverich, A., Boyle, E.C. (2019). Risk Factors and Prevention in Light of Atherosclerosis Being a Microvascular Disease. In: Atherosclerosis Pathogenesis and Microvascular Dysfunction. Springer, Cham. https://doi.org/10.1007/978-3-030-20245-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20245-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20244-6

  • Online ISBN: 978-3-030-20245-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics