Advertisement

Incriminating Evidence for the Role of the Microvasculature in Atherosclerosis

Chapter

Abstract

Different vascular beds show a different susceptibility to atherosclerosis and, even within diseased vessels themselves, plaques display a distinct localization. Vasa vasorum and blood vessel wall lymphatics are distinctly distributed in the arterial system and we propose that their differential distribution plays an important role in the site specificity of disease manifestation. We present the current evidence that obstruction, hypoperfusion, or leakage of vasa vasorum as well as lymphatic dysfunction leads to plaque development. There is also sufficient evidence to postulate a similar pathomechanism in arterial aneurysm and dissection. In atherosclerosis research, the primary focus is always on the endothelium of the parent vessel when, as we will suggest in the following chapter, it is the endothelium of the vasa vasorum that is more susceptible to dysfunction during all stages of disease.

Keywords

Atherosclerosis Arterial aneurysm Dissection Risk factors Dietary cholesterol Homocysteine Air pollution Microbiota clonal hematopoiesis of indeterminate potential Inflammation 

References

  1. 1.
    Delewi R, Yang H, Kastelein J. Atherosclerosis. 2013. www.textbookofcardiology.org/wiki/Atherosclerosis. Accessed 4 Jan 2018.
  2. 2.
    Taggart DP. Current status of arterial grafts for coronary artery bypass grafting. Ann Cardiothorac Surg. 2013;2:427–30.  https://doi.org/10.3978/j.issn.2225-319X.2013.07.21.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Otsuka F, Yahagi K, Sakakura K, Virmani R. Why is the mammary artery so special and what protects it from atherosclerosis? Ann Cardiothorac Surg. 2013;2:519–26.  https://doi.org/10.3978/2416.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hildebrandt HA, Gossl M, Mannheim D, et al. Differential distribution of vasa vasorum in different vascular beds in humans. Atherosclerosis. 2008;199:47–54.  https://doi.org/10.1016/j.atherosclerosis.2007.09.015.CrossRefPubMedGoogle Scholar
  5. 5.
    Galili O, Herrmann J, Woodrum J, et al. Adventitial vasa vasorum heterogeneity among different vascular beds. J Vasc Surg. 2004;40:529–35.  https://doi.org/10.1016/j.jvs.2004.06.032.CrossRefPubMedGoogle Scholar
  6. 6.
    Sano M, Unno N, Sasaki T, et al. Topologic distributions of vasa vasorum and lymphatic vasa vasorum in the aortic adventitia-Implications for the prevalence of aortic diseases. Atherosclerosis. 2016;247:127–34.  https://doi.org/10.1016/j.atherosclerosis.2016.02.007.CrossRefPubMedGoogle Scholar
  7. 7.
    Gössl M, Versari D, Mannheim D, et al. Increased spatial vasa vasorum density in the proximal LAD in hypercholesterolemia-Implications for vulnerable plaque-development. Atherosclerosis. 2007;192:246–52.  https://doi.org/10.1016/j.atherosclerosis.2006.07.004.CrossRefPubMedGoogle Scholar
  8. 8.
    Mulligan-Kehoe MJ. The vasa vasorum in diseased and nondiseased arteries. AJP Hear Circ Physiol. 2010;298:H295–305.  https://doi.org/10.1152/ajpheart.00884.2009.CrossRefGoogle Scholar
  9. 9.
    Kampschulte M, Brinkmann A, Stieger P, et al. Quantitative CT imaging of the spatio-temporal distribution patterns of vasa vasorum in aortas of ApoE-/-/LDL-/- double knockout mice. Atherosclerosis. 2010;212:444–50.  https://doi.org/10.1016/j.atherosclerosis.2010.07.010.CrossRefPubMedGoogle Scholar
  10. 10.
    Nishimiya K, Matsumoto Y, Wang H, et al. Absence of adventitial vasa vasorum formation at the coronary segment with myocardial bridge-An optical coherence tomography study. Int J Cardiol. 2018;250:275–7.  https://doi.org/10.1016/j.ijcard.2017.09.211.CrossRefPubMedGoogle Scholar
  11. 11.
    Langheinrich AC, Michniewicz A, Bohle RM, Ritman EL. Vasa vasorum neovascularization and lesion distribution among different vascular beds in ApoE-/-/LDL-/- double knockout mice. Atherosclerosis. 2007;191:73–81.  https://doi.org/10.1016/j.atherosclerosis.2006.05.021.CrossRefPubMedGoogle Scholar
  12. 12.
    Langheinrich AC, Michniewicz A, Sedding DG, et al. Correlation of vasa vasorum neovascularization and plaque progression in aortas of apolipoprotein E-/-/low-density lipoprotein-/- double knockout mice. Arterioscler Thromb Vasc Biol. 2006;26:347–52.  https://doi.org/10.1161/01.ATV.0000196565.38679.6d.CrossRefPubMedGoogle Scholar
  13. 13.
    Köster K. Endarteritis and Arteritis. Berl Klin Wochenschrift. 1876;13:454–5.Google Scholar
  14. 14.
    Robertson HP. Vascularization of the thoracic aorta. Arch Path. 1929;8:881.Google Scholar
  15. 15.
    Galili O, Sattler KJ, Herrmann J, et al. Experimental hypercholesterolemia differentially affects adventitial vasa vasorum and vessel structure of the left internal thoracic and coronary arteries. J Thorac Cardiovasc Surg. 2005;129:767–72.  https://doi.org/10.1016/j.jtcvs.2004.08.014.CrossRefPubMedGoogle Scholar
  16. 16.
    Clarke JA. An x-ray microscopic study of the blood-supply to the aortic bifurcation and common iliac arteries. Br J Surg. 1966;53:354–8.CrossRefGoogle Scholar
  17. 17.
    Geiringer E. Intimal vascularisation and artherosclerosis. J Pathol Bacteriol. 1951;63:201–11.  https://doi.org/10.1002/path.1700630204.CrossRefPubMedGoogle Scholar
  18. 18.
    Kumamoto M, Nakashima Y, Sueishi K. Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance. Hum Pathol. 1995;26:450–6.CrossRefGoogle Scholar
  19. 19.
    van Dijk RA, Virmani R, von der Thüsen JH, et al. The natural history of aortic atherosclerosis: a systematic histopathological evaluation of the peri-renal region. Atherosclerosis. 2010;210:100–6.  https://doi.org/10.1016/j.atherosclerosis.2009.11.016.CrossRefPubMedGoogle Scholar
  20. 20.
    Uchida Y. Recent advances in fluorescent angioscopy for molecular imaging of human atherosclerotic coronary plaque. J Atheroscler Thromb. 2017.  https://doi.org/10.5551/jat.40352.CrossRefGoogle Scholar
  21. 21.
    Nakashima Y, Wight TN, Sueishi K. Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res. 2008;79:14–23.  https://doi.org/10.1093/cvr/cvn099.CrossRefPubMedGoogle Scholar
  22. 22.
    Maiellaro K, Taylor W. The role of the adventitia in vascular inflammation. Cardiovasc Res. 2007;75:640–8.  https://doi.org/10.1016/j.cardiores.2007.06.023.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Boyle EC, Sedding DG, Haverich A. Targeting vasa vasorum dysfunction to prevent atherosclerosis. Vascul Pharmacol. 2017;96–98:5–10.  https://doi.org/10.1016/j.vph.2017.08.003.CrossRefPubMedGoogle Scholar
  24. 24.
    Nakashima Y, Fujii H, Sumiyoshi S, et al. Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol. 2007;27:1159–65.  https://doi.org/10.1161/ATVBAHA.106.134080.CrossRefPubMedGoogle Scholar
  25. 25.
    Herrmann J, Lerman LO, Rodriguez-Porcel M, et al. Coronary vasa vasorum neovascularization precedes epicardial endothelial dysfunction in experimental hypercholesterolemia. Cardiovasc Res. 2001;51:762–6.CrossRefGoogle Scholar
  26. 26.
    Häkkinen T, Karkola K, Ylä-Herttuala S. Macrophages, smooth muscle cells, endothelial cells, and T-cells express CD40 and CD40L in fatty streaks and more advanced human atherosclerotic lesions. Colocalization with epitopes of oxidized low-density lipoprotein, scavenger receptor, and CD16 (Fc gammaRIII). Virchows Arch. 2000;437:396–405.CrossRefGoogle Scholar
  27. 27.
    Ylä-Herttuala S, Bentzon JF, Daemen M, et al. Stabilisation of atherosclerotic plaques. Position paper of the European Society of Cardiology (ESC) Working Group on atherosclerosis and vascular biology. Thromb Haemost. 2011;106:1–19.  https://doi.org/10.1160/TH10-12-0784.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhu X-Y. Antioxidant intervention attenuates myocardial neovascularization in hypercholesterolemia. Circulation. 2004;109:2109–15.  https://doi.org/10.1161/01.CIR.0000125742.65841.8B.CrossRefPubMedGoogle Scholar
  29. 29.
    Aufrecht E. Die Genese der Arteriosklerose (Arteriitis). Deu Arch f klin Med. 1908;93:1–14.Google Scholar
  30. 30.
    Martin H. Recherches sur la nature et la pathogénie des lésions viscérales consécutives à l’endartérite oblitérante et progressive. Scléroses dystrophiques. Rev méd. 1881;1:369.Google Scholar
  31. 31.
    Nakata Y, Shionoya S. Vascular lesions due to obstruction of the vasa vasorum. Nature. 1966;212:1258–9.CrossRefGoogle Scholar
  32. 32.
    Reuter K. Neue befunde von Spirochaeta Pallida in menschlichen Körper und ihre Bedeutung für die Aetiologie der Syphilis. Zeitschrift für Hyg und Infekt. 1906;54:49–60.CrossRefGoogle Scholar
  33. 33.
    O’Regan AW, Castro C, Lukehart SA, et al. Barking up the wrong tree? Use of polymerase chain reaction to diagnose syphilitic aortitis. Thorax. 2002;57:917–8.CrossRefGoogle Scholar
  34. 34.
    Stone JR, Bruneval P, Angelini A, et al. Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: I. Inflammatory diseases. Cardiovasc Pathol. 2015;24:267–78.  https://doi.org/10.1016/j.carpath.2015.05.001.CrossRefGoogle Scholar
  35. 35.
    Heistad DD, Marcus ML. Role of vasa vasorum in nourishment of the aorta. Blood Vessel. 1979;16:225–38.Google Scholar
  36. 36.
    Heistad DD, Marcus ML, Larsen GE, Armstrong ML. Role of vasa vasorum in nourishment of the aortic wall. Am J Physiol. 1981;240:H781–7.PubMedGoogle Scholar
  37. 37.
    Barker SG, Talbert A, Cottam S, et al. Arterial intimal hyperplasia after occlusion of the adventitial vasa vasorum in the pig. Arterioscler Thromb Vasc Biol. 1993;13:70–7.  https://doi.org/10.1161/01.ATV.13.1.70.CrossRefGoogle Scholar
  38. 38.
    Booth RFG, Martin JF, Honey AC, et al. Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation. Atherosclerosis. 1989;76:257–68.  https://doi.org/10.1016/0021-9150(89)90109-3.CrossRefPubMedGoogle Scholar
  39. 39.
    Brody WR, Angeli WW, Kosek JC. Histologic fate of the venous coronary artery bypass in dogs. Am J Pathol. 1972;66:111–30.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Billingham ME. Endomyocardial biopsy diagnosis of acute rejection in cardiac allografts. Prog Cardiovasc Dis. 1990;33:11–8.CrossRefGoogle Scholar
  41. 41.
    Fujita M, Russell ME, Masek MA, et al. Graft vascular disease in the great vessels and vasa vasorum. Hum Pathol. 1993;24:1067–72.CrossRefGoogle Scholar
  42. 42.
    Caves PK, Stinson EB, Billingham ME, et al. Diagnosis of human cardiac allograft rejection by serial cardiac biopsy. J Thorac Cardiovasc Surg. 1973;66:461–6.PubMedGoogle Scholar
  43. 43.
    Barner HB, Farkas EA. Conduits for coronary bypass: vein grafts. Korean J Thorac Cardiovasc Surg. 2012;45:275–86.  https://doi.org/10.5090/kjtcs.2012.45.5.275.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Gournay V. The ductus arteriosus: physiology, regulation, and functional and congenital anomalies. Arch Cardiovasc Dis. 2011;104:578–85.  https://doi.org/10.1016/j.acvd.2010.06.006.CrossRefPubMedGoogle Scholar
  45. 45.
    Kajino H, Goldbarg S, Roman C, et al. Vasa vasorum hypoperfusion is responsible for medial hypoxia and anatomic remodeling in the newborn lamb ductus arteriosus. Pediatr Res. 2002;51:228–35.  https://doi.org/10.1203/00006450-200202000-00017.CrossRefPubMedGoogle Scholar
  46. 46.
    Stefanadis CI, Karayannacos PE, Boudoulas HK, et al. Medial necrosis and acute alterations in aortic distensibility following removal of the vasa vasorum of canine ascending aorta. Cardiovasc Res. 1993;27:951–6.CrossRefGoogle Scholar
  47. 47.
    Stefanadis C, Vlachopoulos C, Karayannacos P, et al. Effect of vasa vasorum flow on structure and function of the aorta in experimental animals. Circulation. 1995;91:2669–78.CrossRefGoogle Scholar
  48. 48.
    Rademakers T, Douma K, Hackeng TM, et al. Plaque-associated vasa vasorum in aged apolipoprotein E-deficient mice exhibit proatherogenic functional features in vivo. Arterioscler Thromb Vasc Biol. 2013;33:249–56.  https://doi.org/10.1161/ATVBAHA.112.300087.CrossRefPubMedGoogle Scholar
  49. 49.
    Jeziorska M, Woolley DE. Neovascularization in early atherosclerotic lesions of human carotid arteries: its potential contribution to plaque development. Hum Pathol. 1999;30:919–25.CrossRefGoogle Scholar
  50. 50.
    Dunmore BJ, McCarthy MJ, Naylor AR, Brindle NPJ. Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques. J Vasc Surg. 2007;45:155–9.  https://doi.org/10.1016/j.jvs.2006.08.072.CrossRefPubMedGoogle Scholar
  51. 51.
    Sluimer JC, Daemen MJ. Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol. 2009;218:7–29.  https://doi.org/10.1002/path.2518.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang Y, Cliff WJ, Schoefl GI, Higgins G. Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol. 1993;143:164–72.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Moreno PR, Purushothaman KR, Fuster V, et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation. 2004;110:2032–8.  https://doi.org/10.1161/01.CIR.0000143233.87854.23.CrossRefPubMedGoogle Scholar
  54. 54.
    Eriksson EE. Intravital microscopy on atherosclerosis in apolipoprotein e-deficient mice establishes microvessels as major entry pathways for leukocytes to advanced lesions. Circulation. 2011;124:2129–38.  https://doi.org/10.1161/CIRCULATIONAHA.111.030627.CrossRefPubMedGoogle Scholar
  55. 55.
    Moulton KS, Vakili K, Zurakowski D, et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci. 2003;100:4736–41.  https://doi.org/10.1073/pnas.0730843100.CrossRefPubMedGoogle Scholar
  56. 56.
    Nakashima Y, Raines EW, Plump AS, et al. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol. 1998;18:842–51.CrossRefGoogle Scholar
  57. 57.
    Skinner SA, O’Brien PE. The microvascular structure of the normal colon in rats and humans. J Surg Res. 1996;61:482–90.  https://doi.org/10.1006/jsre.1996.0151.CrossRefGoogle Scholar
  58. 58.
    O’Brien KD, Allen MD, McDonald TO, et al. Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest. 1993;92:945–51.  https://doi.org/10.1172/JCI116670.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Virmani R, Kolodgie FD, Burke AP, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25:2054–61.  https://doi.org/10.1161/01.ATV.0000178991.71605.18.CrossRefPubMedGoogle Scholar
  60. 60.
    Sluimer JC, Kolodgie FD, Bijnens APJJ, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions. J Am Coll Cardiol. 2009;53:1517–27.  https://doi.org/10.1016/j.jacc.2008.12.056.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Michel J-B, Virmani R, Arbustini E, Pasterkamp G. Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur Heart J. 2011;32:1977–85.  https://doi.org/10.1093/eurheartj/ehr054.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Van der Donckt C, Van Herck JL, Schrijvers DM, et al. Elastin fragmentation in atherosclerotic mice leads to intraplaque neovascularization, plaque rupture, myocardial infarction, stroke, and sudden death. Eur Heart J. 2015;36:1049–58.  https://doi.org/10.1093/eurheartj/ehu041.CrossRefPubMedGoogle Scholar
  63. 63.
    Virchow R. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Berlin: Hirschwald; 1858.Google Scholar
  64. 64.
    Johnsen SH, Forsdahl SH, Singh K, Jacobsen BK. Atherosclerosis in abdominal aortic aneurysms: a causal event or a process running in parallel? The Tromsø study. Arterioscler Thromb Vasc Biol. 2010;30:1263–8.  https://doi.org/10.1161/ATVBAHA.110.203588.CrossRefPubMedGoogle Scholar
  65. 65.
    Sterpetti AV, Feldhaus RJ, Schultz RD, Blair EA. Identification of abdominal aortic aneurysm patients with different clinical features and clinical outcomes. Am J Surg. 1988;156:466–9.CrossRefGoogle Scholar
  66. 66.
    Peshkova IO, Schaefer G, Koltsova EK. Atherosclerosis and aortic aneurysm-is inflammation a common denominator? FEBS J. 2016;283:1636–52.  https://doi.org/10.1111/febs.13634.CrossRefPubMedGoogle Scholar
  67. 67.
    Ballaro A, Cortina-Borja M, Collin J. A seasonal variation in the incidence of ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 1998;15:429–31.CrossRefGoogle Scholar
  68. 68.
    Xie N, Zou L, Ye L. The effect of meteorological conditions and air pollution on the occurrence of type A and B acute aortic dissections. Int J Biometeorol. 2018;62:1607–13.  https://doi.org/10.1007/s00484-018-1560-0.CrossRefPubMedGoogle Scholar
  69. 69.
    Brennan PJ, Greenberg G, Miall WE, Thompson SG. Seasonal variation in arterial blood pressure. Br Med J (Clin Res Ed). 1982;285:919–23.CrossRefGoogle Scholar
  70. 70.
    Hata T, Ogihara T, Maruyama A, et al. The seasonal variation of blood pressure in patients with essential hypertension. Clin Exp Hypertens A. 1982;4:341–54.PubMedGoogle Scholar
  71. 71.
    Imai Y, Munakata M, Tsuji I, et al. Seasonal variation in blood pressure in normotensive women studied by home measurements. Clin Sci (Lond). 1996;90:55–60.CrossRefGoogle Scholar
  72. 72.
    Iwahori T, Miura K, Obayashi K, et al. Seasonal variation in home blood pressure: findings from nationwide web-based monitoring in Japan. BMJ Open. 2018;8:e017351.  https://doi.org/10.1136/bmjopen-2017-017351.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Jun X, Jin G, Fu C, et al. PM2.5 promotes abdominal aortic aneurysm formation in angiotensin II-infused apoe-/- mice. Biomed Pharmacother. 2018;104:550–7.  https://doi.org/10.1016/j.biopha.2018.04.107.CrossRefPubMedGoogle Scholar
  74. 74.
    Pisano C, Balistreri CR, Ricasoli A, Ruvolo G. Cardiovascular disease in ageing: an overview on thoracic aortic aneurysm as an emerging inflammatory disease. Mediators Inflamm. 2017;2017:1274034.  https://doi.org/10.1155/2017/1274034.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Schönbeck U, Sukhova GK, Gerdes N, Libby P. T(H)2 predominant immune responses prevail in human abdominal aortic aneurysm. Am J Pathol. 2002;161:499–506.  https://doi.org/10.1016/S0002-9440(10)64206-X.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    He R, Guo D-C, Estrera AL, et al. Characterization of the inflammatory and apoptotic cells in the aortas of patients with ascending thoracic aortic aneurysms and dissections. J Thorac Cardiovasc Surg. 2006;131:671–8.  https://doi.org/10.1016/j.jtcvs.2005.09.018.CrossRefPubMedGoogle Scholar
  77. 77.
    He R, Guo D-C, Sun W, et al. Characterization of the inflammatory cells in ascending thoracic aortic aneurysms in patients with Marfan syndrome, familial thoracic aortic aneurysms, and sporadic aneurysms. J Thorac Cardiovasc Surg. 2008;136(922–9):929.e1.  https://doi.org/10.1016/j.jtcvs.2007.12.063.CrossRefGoogle Scholar
  78. 78.
    Billaud M, Hill JC, Richards TD, et al. Medial hypoxia and adventitial vasa vasorum remodeling in human ascending aortic aneurysm. Front Cardiovasc Med. 2018;5:124.  https://doi.org/10.3389/fcvm.2018.00124.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Guo D-C, Pannu H, Tran-Fadulu V, et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007;39:1488–93.  https://doi.org/10.1038/ng.2007.6.CrossRefPubMedGoogle Scholar
  80. 80.
    Tanaka H, Zaima N, Sasaki T, et al. Adventitial vasa vasorum arteriosclerosis in abdominal aortic aneurysm. PLoS One. 2013;8:e57398.  https://doi.org/10.1371/journal.pone.0057398.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Tanaka H, Zaima N, Sasaki T, et al. Hypoperfusion of the adventitial vasa vasorum develops an abdominal aortic aneurysm. PLoS One. 2015;10:e0134386.  https://doi.org/10.1371/journal.pone.0134386.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Kessler K, Borges LF, Ho-Tin-Noé B, et al. Angiogenesis and remodelling in human thoracic aortic aneurysms. Cardiovasc Res. 2014;104:147–59.  https://doi.org/10.1093/cvr/cvu196.CrossRefPubMedGoogle Scholar
  83. 83.
    Tyson MD. Dissecting aneurysms. Am J Pathol. 1931;7(581–604):13.PubMedGoogle Scholar
  84. 84.
    Hirst AE, Johns VJ, Kime SW. Dissecting aneurysm of the aorta: a review of 505 cases. Med (Baltimore). 1958;37:217–79.CrossRefGoogle Scholar
  85. 85.
    Osada H, Kyogoku M, Ishidou M, et al. Aortic dissection in the outer third of the media: what is the role of the vasa vasorum in the triggering process? Eur J Cardiothorac Surg. 2013;43:e82–8.  https://doi.org/10.1093/ejcts/ezs640.CrossRefPubMedGoogle Scholar
  86. 86.
    Völker W, Dittrich R, Grewe S, et al. The outer arterial wall layers are primarily affected in spontaneous cervical artery dissection. Neurology. 2011;76:1463–71.  https://doi.org/10.1212/WNL.0b013e318217e71c.CrossRefPubMedGoogle Scholar
  87. 87.
    Hayes SN, Kim ESH, Saw J, et al. Spontaneous coronary artery dissection: current state of the science: a scientific statement from the American heart association. Circulation. 2018;137:e523–57.  https://doi.org/10.1161/CIR.0000000000000564.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Adlam D, Alfonso F, Maas A, et al. European Society of Cardiology, acute cardiovascular care association, SCAD study group: a position paper on spontaneous coronary artery dissection. Eur Heart J. 2018;39:3353–68.  https://doi.org/10.1093/eurheartj/ehy080.CrossRefPubMedGoogle Scholar
  89. 89.
    Thomas LC, Hall LA, Attia JR, et al. Seasonal variation in spontaneous cervical artery dissection: comparing between UK and Australian sites. J Stroke Cerebrovasc Dis. 2017;26:177–85.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.09.006.CrossRefPubMedGoogle Scholar
  90. 90.
    Thomas LC, Makaroff AP, Oldmeadow C, et al. Seasonal variation in cervical artery dissection in the Hunter New England region, New South Wales, Australia: a retrospective cohort study. Musculoskelet Sci Pract. 2017;27:106–11.  https://doi.org/10.1016/j.math.2016.10.007.CrossRefPubMedGoogle Scholar
  91. 91.
    Takagi H, Ando T, Umemoto T, (ALICE [All-Literature Investigation of Cardiovascular Evidence] Group). Meta-analysis of seasonal incidence of aortic dissection. Am J Cardiol. 2017;120:700–7.  https://doi.org/10.1016/j.amjcard.2017.05.040.CrossRefGoogle Scholar
  92. 92.
    Vitale J, Manfredini R, Gallerani M, et al. Chronobiology of acute aortic rupture or dissection: a systematic review and a meta-analysis of the literature. Chronobiol Int. 2015;32:385–94.  https://doi.org/10.3109/07420528.2014.983604.CrossRefPubMedGoogle Scholar
  93. 93.
    Drozdz K, Janczak D, Dziegiel P, et al. Adventitial lymphatics of internal carotid artery in healthy and atherosclerotic vessels. Folia Histochem Cytobiol. 2008;46:433–6.  https://doi.org/10.2478/v10042-008-0083-7.CrossRefPubMedGoogle Scholar
  94. 94.
    Drozdz K, Janczak D, Dziegiel P, et al. Adventitial lymphatics and atherosclerosis. Lymphology. 2012;45:26–33.PubMedGoogle Scholar
  95. 95.
    Kholová I, Dragneva G, Čermáková P, et al. Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in cholesterol-rich and calcified atherosclerotic lesions. Eur J Clin Invest. 2011;41:487–97.  https://doi.org/10.1111/j.1365-2362.2010.02431.x.CrossRefPubMedGoogle Scholar
  96. 96.
    Taher M, Nakao S, Zandi S, et al. Phenotypic transformation of intimal and adventitial lymphatics in atherosclerosis: a regulatory role for soluble VEGF receptor 2. FASEB J. 2016;30:2490–9.  https://doi.org/10.1096/fj.201500112.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Nakano T, Nakashima Y, Yonemitsu Y, et al. Angiogenesis and lymphangiogenesis and expression of lymphangiogenic factors in the atherosclerotic intima of human coronary arteries. Hum Pathol. 2005;36:330–40.  https://doi.org/10.1016/j.humpath.2005.01.001.CrossRefPubMedGoogle Scholar
  98. 98.
    Eliska O, Eliskova M, Miller AJ. The absence of lymphatics in normal and atherosclerotic coronary arteries in man: a morphologic study. Lymphology. 2006;39:76–83.PubMedGoogle Scholar
  99. 99.
    Doyle B, Caplice N. Plaque neovascularization and antiangiogenic therapy for atherosclerosis. J Am Coll Cardiol. 2007;49:2073–80.  https://doi.org/10.1016/j.jacc.2007.01.089.CrossRefPubMedGoogle Scholar
  100. 100.
    Cueni LN, Detmar M. The lymphatic system in health and disease. Lymphat Res Biol. 2008;6:109–22.  https://doi.org/10.1089/lrb.2008.1008.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Lorier G, Touriño C, Kalil RAK. Coronary angiogenesis as an endogenous response to myocardial ischemia in adults. Arq Bras Cardiol. 2011;97:e140–8.CrossRefGoogle Scholar
  102. 102.
    Kutkut I, Meens MJ, McKee TA, et al. Lymphatic vessels: an emerging actor in atherosclerotic plaque development. Eur J Clin Invest. 2015;45:100–8.  https://doi.org/10.1111/eci.12372.CrossRefPubMedGoogle Scholar
  103. 103.
    Miller AJ, DeBoer A, Palmer A. The role of the lymphatic system in coronary atherosclerosis. Med Hypotheses. 1992;37:31–6.CrossRefGoogle Scholar
  104. 104.
    Nádasy GL, Solti F, Monos E, et al. Effect of two week lymphatic occlusion on the mechanical properties of dog femoral arteries. Atherosclerosis. 1989;78:251–60.CrossRefGoogle Scholar
  105. 105.
    Nakata Y, Shionoya S. Structure of lymphatics in the aorta and the periaortic tissues, and vascular lesions caused by disturbance of the lymphatics. Lymphology. 1979;12:18–9.PubMedGoogle Scholar
  106. 106.
    Aldrich MB, Sevick-Muraca EM. Cytokines are systemic effectors of lymphatic function in acute inflammation. Cytokine. 2013;64:362–9.  https://doi.org/10.1016/j.cyto.2013.05.015.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Zawieja DC, Greiner ST, Davis KL, et al. Reactive oxygen metabolites inhibit spontaneous lymphatic contractions. Am J Physiol. 1991;260:H1935–43.  https://doi.org/10.1152/ajpheart.1991.260.6.H1935.CrossRefPubMedGoogle Scholar
  108. 108.
    Milasan A, Ledoux J, Martel C. Lymphatic network in atherosclerosis: the underestimated path. Futur Sci OA. 2015;1:FSO61.  https://doi.org/10.4155/fso.15.61.
  109. 109.
    Llodra J, Angeli V, Liu J, et al. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc Natl Acad Sci USA. 2004;101:11779–84.  https://doi.org/10.1073/pnas.0403259101.CrossRefPubMedGoogle Scholar
  110. 110.
    Martel C, Li W, Fulp B, et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest. 2013;123:1571–9.  https://doi.org/10.1172/JCI63685.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Vuorio T, Nurmi H, Moulton K, et al. lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis. Arterioscler Thromb Vasc Biol. 2014;34:1162–70.  https://doi.org/10.1161/ATVBAHA.114.302528.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hannover Medical SchoolHannoverGermany

Personalised recommendations