Advertisement

The Effect of Growth and Aging on the Vascular Architecture

Chapter
  • 366 Downloads

Abstract

Atherosclerosis is a disease of medium-sized and large arteries, and as such, we will first delve into the architecture of the arterial vessel wall. We will discuss how growth necessitates changes to the structure of arteries which are not uniform throughout the arterial tree, but rather adapt to local nutritional needs and physiological factors. Vasa vasorum microvessels supply the walls of medium and large vessels with nutrients and oxygen, while the lymphatic microvessels in the blood vessel wall play crucial roles in interstitial fluid balance, lipid absorption and metabolism, and immune surveillance. An appreciation for the complexity of the blood and lymphatic microvasculature responsible for blood vessel wall nutrition, we think, is an often overlooked aspect of the pathophysiology of cardiovascular disease.

Keywords

Microvasculature Vasa vasorum Vessel wall nutrition Intima Media Adventitia Diffuse intimal thickening Lymphatic vessels 

References

  1. 1.
    Wolkoff K. Ueber die histologische Struktur der Coronararterien des menschlichen Herzens. Virchows Arch. 1923;241:42–58.CrossRefGoogle Scholar
  2. 2.
    Boyle EC, Sedding DG, Haverich A. Targeting vasa vasorum dysfunction to prevent atherosclerosis. Vascul Pharmacol. 2017;96–98:5–10.  https://doi.org/10.1016/j.vph.2017.08.003.CrossRefPubMedGoogle Scholar
  3. 3.
    Majesky MW, Dong XR, Hoglund V, et al. The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol. 2011;31:1530–9.  https://doi.org/10.1161/ATVBAHA.110.221549.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Galkina E, Kadl A, Sanders J, et al. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J Exp Med. 2006;203:1273–82.  https://doi.org/10.1084/jem.20052205.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wörsdörfer P, Mekala SR, Bauer J, et al. The vascular adventitia: an endogenous, omnipresent source of stem cells in the body. Pharmacol Ther. 2017;171:13–29.  https://doi.org/10.1016/j.pharmthera.2016.07.017.CrossRefPubMedGoogle Scholar
  6. 6.
    Ritman E, Lerman A. The dynamic vasa vasorum. Cardiovasc Res. 2007;75:649–58.  https://doi.org/10.1016/j.cardiores.2007.06.020.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bear J. Dynamics of Fluids in Porous Media; 1972.Google Scholar
  8. 8.
    Winternitz MC, Thomas RMM, LeCompte P. The biology of arteriosclerosis. Springfield, IL: Charles C Thomas; 1938.CrossRefGoogle Scholar
  9. 9.
    Thoma R. Über die Abhängigkeit der Bindegewebsneubildung in der Arterienintima von den mechanischen Bedingungen des Blutumlaufs. Virchows Arch. 1883;93:443–505.CrossRefGoogle Scholar
  10. 10.
    Wolkoff K. Ueber die Altersveraenderungen der Arterien bei Tieren. Virchows. 1924;252:208–28.CrossRefGoogle Scholar
  11. 11.
    Anitschow NN. Experimental arteriosclerosis in animals. In: Crowdy EV, editor. Arteriosclerosis: a survey of the problem. New York: MacMillan Publishing; 1933. p. 271–322.Google Scholar
  12. 12.
    Nakashima Y, Chen Y-X, Kinukawa N, Sueishi K. Distributions of diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early age. Virchows Arch. 2002;441:279–88.  https://doi.org/10.1007/s00428-002-0605-1.CrossRefPubMedGoogle Scholar
  13. 13.
    Stary HC, Blankenhorn DH, Chandler AB, et al. A definition of the intima of human arteries and of its atherosclerosis- prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol. 1992;12:120–34.  https://doi.org/10.1161/01.ATV.12.1.120.CrossRefGoogle Scholar
  14. 14.
    Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.CrossRefGoogle Scholar
  15. 15.
    Geiringer E. Intimal vascularisation and artherosclerosis. J Pathol Bacteriol. 1951;63:201–11.  https://doi.org/10.1002/path.1700630204.CrossRefPubMedGoogle Scholar
  16. 16.
    Wolinsky H, Glagov S. Comparison of abdominal and thoracic aortic medial structure in mammals. Circ Res. 1969;25:677–86.  https://doi.org/10.1161/01.RES.25.6.677.CrossRefPubMedGoogle Scholar
  17. 17.
    Osborn GR. The incubation period of coronary thrombosis. London: Butterworths; 1963.Google Scholar
  18. 18.
    Martin H. Considérations générales sur la pathogénie des scléroses dystrophiques. Revue de Medecine. 1886;1–26.Google Scholar
  19. 19.
    Xu J, Lu X, Shi G-P. Vasa vasorum in atherosclerosis and clinical significance. Int J Mol Sci. 2015;16:11574–608.  https://doi.org/10.3390/ijms160511574.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Clarke JA. An x-ray microscopic study of the postnatal development of the vasa vasorum in the human aorta. J Anat. 1965;99:877–89.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Clarke JA. An x-ray microscopic study of the blood-supply to the aortic bifurcation and common iliac arteries. Br J Surg. 1966;53:354–8.CrossRefGoogle Scholar
  22. 22.
    Wolinsky H, Glagov S. Nature of species differences in the medial distribution of aortic vasa vasorum in mammals. Circ Res. 1967;20:409–21.  https://doi.org/10.1161/01.RES.20.4.409.CrossRefPubMedGoogle Scholar
  23. 23.
    Heistad DD, Marcus ML, Law EG, et al. Regulation of blood flow to the aortic media in dogs. J Clin Invest. 1978;62:133–40.  https://doi.org/10.1172/JCI109097.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Heistad DD, Marcus ML. Role of vasa vasorum in nourishment of the aorta. J Vasc Res. 1979;16:225–38.  https://doi.org/10.1159/000158209.CrossRefGoogle Scholar
  25. 25.
    Heistad DD, Marcus ML, Larsen GE, Armstrong ML. Role of vasa vasorum in nourishment of the aortic wall. Am J Physiol. 1981;240:H781–7.PubMedGoogle Scholar
  26. 26.
    Schoenberger F, Mueller A. On the vascularization of the bovine aortic wall. Helv Physiol Pharmacol Acta. 1960;18:136–50.Google Scholar
  27. 27.
    Kwon HM, Sangiorgi G, Ritman EL, et al. Adventitial vasa vasorum in balloon-injured coronary arteries: visualization and quantitation by a microscopic three-dimensional computed tomography technique. J Am Coll Cardiol. 1998;32:2072–9.  https://doi.org/10.1016/S0735-1097(98)00482-3.CrossRefPubMedGoogle Scholar
  28. 28.
    Gössl M, Rosol M, Malyar NM, et al. Functional anatomy and hemodynamic characteristics of vasa vasorum in the walls of porcine coronary arteries. Anat Rec Part A Discov Mol Cell Evol Biol. 2003;272A:526–37.  https://doi.org/10.1002/ar.a.10060.CrossRefGoogle Scholar
  29. 29.
    Mulligan-Kehoe MJ. The vasa vasorum in diseased and nondiseased arteries. AJP Hear Circ Physiol. 2010;298:H295–305.  https://doi.org/10.1152/ajpheart.00884.2009.CrossRefGoogle Scholar
  30. 30.
    Gössl M, Malyar NM, Rosol M, et al. Impact of coronary vasa vasorum functional structure on coronary vessel wall perfusion distribution. Am J Physiol Hear Circ Physiol. 2003;285:H2019–26.  https://doi.org/10.1152/ajpheart.00399.2003.CrossRefGoogle Scholar
  31. 31.
    Scotland R, Vallance P, Ahluwalia A. Endothelin alters the reactivity of vasa vasorum: mechanisms and implications for conduit vessel physiology and pathophysiology. Br J Pharmacol. 1999;128:1229–34.  https://doi.org/10.1038/sj.bjp.0702930.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Scotland R, Vallance P, Ahluwalia A. On the regulation of tone in vasa vasorum. Cardiovasc Res. 1999;41:237–45.CrossRefGoogle Scholar
  33. 33.
    Adamczyk LA, Gordon K, Kholová I, et al. Lymph vessels: the forgotten second circulation in health and disease. Virchows Arch. 2016;469:3–17.CrossRefGoogle Scholar
  34. 34.
    Baluk P, Fuxe J, Hashizume H, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204:2349–62.  https://doi.org/10.1084/jem.20062596.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Drozdz K, Janczak D, Dziegiel P, et al. Adventitial lymphatics of internal carotid artery in healthy and atherosclerotic vessels. Folia Histochem Cytobiol. 2008;46:433–6.  https://doi.org/10.2478/v10042-008-0083-7.CrossRefPubMedGoogle Scholar
  36. 36.
    Drozdz K, Janczak D, Dziegiel P, et al. Adventitial lymphatics and atherosclerosis. Lymphology. 2012;45:26–33.PubMedGoogle Scholar
  37. 37.
    Sano M, Unno N, Sasaki T, et al. Topologic distributions of vasa vasorum and lymphatic vasa vasorum in the aortic adventitia–implications for the prevalence of aortic diseases. Atherosclerosis. 2016;247:127–34.  https://doi.org/10.1016/j.atherosclerosis.2016.02.007.CrossRefPubMedGoogle Scholar
  38. 38.
    Huang L-H, Elvington A, Randolph GJ. The role of the lymphatic system in cholesterol transport. Front Pharmacol. 2015;6:182.  https://doi.org/10.3389/fphar.2015.00182.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Martel C, Li W, Fulp B, et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest. 2013;123:1571–9.  https://doi.org/10.1172/JCI63685.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dogiel A. Über ein die Lymphgefäße umspinnendes Netz von Blutkapillaren. Arch für Mikroskopische Anat. 1879;17:334.Google Scholar
  41. 41.
    Dogiel A. Über die Beziehungen zwischen Blut- und Lymphgefäßen. Arch f Mik Anat. 1883;22:608.Google Scholar
  42. 42.
    Evans HM. The blood supply of lymphatic vessels in man. Am J Anat. 1907;7:195–208.CrossRefGoogle Scholar
  43. 43.
    Chiba T, Narita H, Shimoda H. Fine structure of human thoracic duct as revealed by light and scanning electron microscopy. Biomed Res. 2017;38:197–205.  https://doi.org/10.2220/biomedres.38.197.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hannover Medical SchoolHannoverGermany

Personalised recommendations