Skip to main content

The Effect of Growth and Aging on the Vascular Architecture

  • Chapter
  • First Online:
Atherosclerosis Pathogenesis and Microvascular Dysfunction
  • 686 Accesses

Abstract

Atherosclerosis is a disease of medium-sized and large arteries, and as such, we will first delve into the architecture of the arterial vessel wall. We will discuss how growth necessitates changes to the structure of arteries which are not uniform throughout the arterial tree, but rather adapt to local nutritional needs and physiological factors. Vasa vasorum microvessels supply the walls of medium and large vessels with nutrients and oxygen, while the lymphatic microvessels in the blood vessel wall play crucial roles in interstitial fluid balance, lipid absorption and metabolism, and immune surveillance. An appreciation for the complexity of the blood and lymphatic microvasculature responsible for blood vessel wall nutrition , we think, is an often overlooked aspect of the pathophysiology of cardiovascular disease .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolkoff K. Ueber die histologische Struktur der Coronararterien des menschlichen Herzens. Virchows Arch. 1923;241:42–58.

    Article  Google Scholar 

  2. Boyle EC, Sedding DG, Haverich A. Targeting vasa vasorum dysfunction to prevent atherosclerosis. Vascul Pharmacol. 2017;96–98:5–10. https://doi.org/10.1016/j.vph.2017.08.003.

    Article  CAS  PubMed  Google Scholar 

  3. Majesky MW, Dong XR, Hoglund V, et al. The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol. 2011;31:1530–9. https://doi.org/10.1161/ATVBAHA.110.221549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Galkina E, Kadl A, Sanders J, et al. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J Exp Med. 2006;203:1273–82. https://doi.org/10.1084/jem.20052205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wörsdörfer P, Mekala SR, Bauer J, et al. The vascular adventitia: an endogenous, omnipresent source of stem cells in the body. Pharmacol Ther. 2017;171:13–29. https://doi.org/10.1016/j.pharmthera.2016.07.017.

    Article  CAS  PubMed  Google Scholar 

  6. Ritman E, Lerman A. The dynamic vasa vasorum. Cardiovasc Res. 2007;75:649–58. https://doi.org/10.1016/j.cardiores.2007.06.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bear J. Dynamics of Fluids in Porous Media; 1972.

    Google Scholar 

  8. Winternitz MC, Thomas RMM, LeCompte P. The biology of arteriosclerosis. Springfield, IL: Charles C Thomas; 1938.

    Book  Google Scholar 

  9. Thoma R. Über die Abhängigkeit der Bindegewebsneubildung in der Arterienintima von den mechanischen Bedingungen des Blutumlaufs. Virchows Arch. 1883;93:443–505.

    Article  Google Scholar 

  10. Wolkoff K. Ueber die Altersveraenderungen der Arterien bei Tieren. Virchows. 1924;252:208–28.

    Article  Google Scholar 

  11. Anitschow NN. Experimental arteriosclerosis in animals. In: Crowdy EV, editor. Arteriosclerosis: a survey of the problem. New York: MacMillan Publishing; 1933. p. 271–322.

    Google Scholar 

  12. Nakashima Y, Chen Y-X, Kinukawa N, Sueishi K. Distributions of diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early age. Virchows Arch. 2002;441:279–88. https://doi.org/10.1007/s00428-002-0605-1.

    Article  PubMed  Google Scholar 

  13. Stary HC, Blankenhorn DH, Chandler AB, et al. A definition of the intima of human arteries and of its atherosclerosis- prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol. 1992;12:120–34. https://doi.org/10.1161/01.ATV.12.1.120.

    Article  CAS  Google Scholar 

  14. Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.

    Article  CAS  Google Scholar 

  15. Geiringer E. Intimal vascularisation and artherosclerosis. J Pathol Bacteriol. 1951;63:201–11. https://doi.org/10.1002/path.1700630204.

    Article  CAS  PubMed  Google Scholar 

  16. Wolinsky H, Glagov S. Comparison of abdominal and thoracic aortic medial structure in mammals. Circ Res. 1969;25:677–86. https://doi.org/10.1161/01.RES.25.6.677.

    Article  CAS  PubMed  Google Scholar 

  17. Osborn GR. The incubation period of coronary thrombosis. London: Butterworths; 1963.

    Google Scholar 

  18. Martin H. Considérations générales sur la pathogénie des scléroses dystrophiques. Revue de Medecine. 1886;1–26.

    Google Scholar 

  19. Xu J, Lu X, Shi G-P. Vasa vasorum in atherosclerosis and clinical significance. Int J Mol Sci. 2015;16:11574–608. https://doi.org/10.3390/ijms160511574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clarke JA. An x-ray microscopic study of the postnatal development of the vasa vasorum in the human aorta. J Anat. 1965;99:877–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Clarke JA. An x-ray microscopic study of the blood-supply to the aortic bifurcation and common iliac arteries. Br J Surg. 1966;53:354–8.

    Article  CAS  Google Scholar 

  22. Wolinsky H, Glagov S. Nature of species differences in the medial distribution of aortic vasa vasorum in mammals. Circ Res. 1967;20:409–21. https://doi.org/10.1161/01.RES.20.4.409.

    Article  CAS  PubMed  Google Scholar 

  23. Heistad DD, Marcus ML, Law EG, et al. Regulation of blood flow to the aortic media in dogs. J Clin Invest. 1978;62:133–40. https://doi.org/10.1172/JCI109097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heistad DD, Marcus ML. Role of vasa vasorum in nourishment of the aorta. J Vasc Res. 1979;16:225–38. https://doi.org/10.1159/000158209.

    Article  CAS  Google Scholar 

  25. Heistad DD, Marcus ML, Larsen GE, Armstrong ML. Role of vasa vasorum in nourishment of the aortic wall. Am J Physiol. 1981;240:H781–7.

    CAS  PubMed  Google Scholar 

  26. Schoenberger F, Mueller A. On the vascularization of the bovine aortic wall. Helv Physiol Pharmacol Acta. 1960;18:136–50.

    Google Scholar 

  27. Kwon HM, Sangiorgi G, Ritman EL, et al. Adventitial vasa vasorum in balloon-injured coronary arteries: visualization and quantitation by a microscopic three-dimensional computed tomography technique. J Am Coll Cardiol. 1998;32:2072–9. https://doi.org/10.1016/S0735-1097(98)00482-3.

    Article  CAS  PubMed  Google Scholar 

  28. Gössl M, Rosol M, Malyar NM, et al. Functional anatomy and hemodynamic characteristics of vasa vasorum in the walls of porcine coronary arteries. Anat Rec Part A Discov Mol Cell Evol Biol. 2003;272A:526–37. https://doi.org/10.1002/ar.a.10060.

    Article  Google Scholar 

  29. Mulligan-Kehoe MJ. The vasa vasorum in diseased and nondiseased arteries. AJP Hear Circ Physiol. 2010;298:H295–305. https://doi.org/10.1152/ajpheart.00884.2009.

    Article  CAS  Google Scholar 

  30. Gössl M, Malyar NM, Rosol M, et al. Impact of coronary vasa vasorum functional structure on coronary vessel wall perfusion distribution. Am J Physiol Hear Circ Physiol. 2003;285:H2019–26. https://doi.org/10.1152/ajpheart.00399.2003.

    Article  Google Scholar 

  31. Scotland R, Vallance P, Ahluwalia A. Endothelin alters the reactivity of vasa vasorum: mechanisms and implications for conduit vessel physiology and pathophysiology. Br J Pharmacol. 1999;128:1229–34. https://doi.org/10.1038/sj.bjp.0702930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scotland R, Vallance P, Ahluwalia A. On the regulation of tone in vasa vasorum. Cardiovasc Res. 1999;41:237–45.

    Article  CAS  Google Scholar 

  33. Adamczyk LA, Gordon K, Kholová I, et al. Lymph vessels: the forgotten second circulation in health and disease. Virchows Arch. 2016;469:3–17.

    Article  Google Scholar 

  34. Baluk P, Fuxe J, Hashizume H, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204:2349–62. https://doi.org/10.1084/jem.20062596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Drozdz K, Janczak D, Dziegiel P, et al. Adventitial lymphatics of internal carotid artery in healthy and atherosclerotic vessels. Folia Histochem Cytobiol. 2008;46:433–6. https://doi.org/10.2478/v10042-008-0083-7.

    Article  PubMed  Google Scholar 

  36. Drozdz K, Janczak D, Dziegiel P, et al. Adventitial lymphatics and atherosclerosis. Lymphology. 2012;45:26–33.

    CAS  PubMed  Google Scholar 

  37. Sano M, Unno N, Sasaki T, et al. Topologic distributions of vasa vasorum and lymphatic vasa vasorum in the aortic adventitia–implications for the prevalence of aortic diseases. Atherosclerosis. 2016;247:127–34. https://doi.org/10.1016/j.atherosclerosis.2016.02.007.

    Article  CAS  PubMed  Google Scholar 

  38. Huang L-H, Elvington A, Randolph GJ. The role of the lymphatic system in cholesterol transport. Front Pharmacol. 2015;6:182. https://doi.org/10.3389/fphar.2015.00182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martel C, Li W, Fulp B, et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest. 2013;123:1571–9. https://doi.org/10.1172/JCI63685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dogiel A. Über ein die Lymphgefäße umspinnendes Netz von Blutkapillaren. Arch für Mikroskopische Anat. 1879;17:334.

    Google Scholar 

  41. Dogiel A. Über die Beziehungen zwischen Blut- und Lymphgefäßen. Arch f Mik Anat. 1883;22:608.

    Google Scholar 

  42. Evans HM. The blood supply of lymphatic vessels in man. Am J Anat. 1907;7:195–208.

    Article  Google Scholar 

  43. Chiba T, Narita H, Shimoda H. Fine structure of human thoracic duct as revealed by light and scanning electron microscopy. Biomed Res. 2017;38:197–205. https://doi.org/10.2220/biomedres.38.197.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Haverich .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haverich, A., Boyle, E.C. (2019). The Effect of Growth and Aging on the Vascular Architecture. In: Atherosclerosis Pathogenesis and Microvascular Dysfunction. Springer, Cham. https://doi.org/10.1007/978-3-030-20245-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20245-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20244-6

  • Online ISBN: 978-3-030-20245-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics