Advertisement

Atherosclerosis Risk Factors

Chapter
  • 690 Downloads

Abstract

Risk factor is defined as a variable that is causally associated with an increased rate of the disease and is an independent, significant predictor of the risk of developing the disease. Risk factors of atherosclerosis range from unavoidable genetic conditions or comorbidities, to environmental factors, to modifiable lifestyle behaviors. In this chapter, we not only cover the classical risk factors of atherosclerosis but also examine more controversial and emerging risk factors. The role of inflammation as a potential unifying concept in disease pathogenesis will also be considered.

Keywords

Atherosclerosis Risk factors Dietary cholesterol Diabetes Hypertension Cigarette smoking Infection Chronic kidney disease Homocysteine Air pollution Microbiota Clonal hematopoiesis of indeterminate potential Inflammation 

References

  1. 1.
    Anitschow NN. Deuxième Conférence Internationale de Pathologie Géographique. Oosthoek; 1935.Google Scholar
  2. 2.
    Keys A, Taylor HL, Blackburn H, et al. Coronary heart disease among minnesota business and professional men followed fifteen years. Circulation. 1963;28:381–95.  https://doi.org/10.1161/01.CIR.28.3.381.CrossRefPubMedGoogle Scholar
  3. 3.
    History of the Framingham Heart Study. In: Framingham Heart Study. http://www.framinghamheartstudy.org/about-fhs/history.php (2017). Accessed 8 Aug 2017.
  4. 4.
    Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet (London, England). 2014;383:999–1008.  https://doi.org/10.1016/S0140-6736(13)61752-3.CrossRefGoogle Scholar
  5. 5.
    Dawber TR, Moore FE, Mann GV. Coronary heart disease in the Framingham Study. Am J Public Health Nations Health. 1957;47:4–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Kannel WB, Dawber TR, Kagan A, et al. Factors of risk in the development of coronary heart disease—six year follow-up experience. The Framingham Study. Ann Intern Med. 1961;55:33–50.CrossRefGoogle Scholar
  7. 7.
    O’Donnell CJ, Elosua R. Cardiovascular risk factors. Insights from Framingham Heart Study. Rev Esp Cardiol. 2008;61:299–310.  https://doi.org/10.1016/S1885-5857(08)60118-8.CrossRefPubMedGoogle Scholar
  8. 8.
    Jousilahti P, Vartiainen E, Tuomilehto J, Puska P. Sex, age, cardiovascular risk factors, and coronary heart disease. Circulation. 1999;99.PubMedCrossRefGoogle Scholar
  9. 9.
    Meadows TA, Bhatt DL, Cannon CP, et al. Ethnic differences in cardiovascular risks and mortality in atherothrombotic disease: insights from the Reduction of Atherothrombosis for Continued Health (REACH) registry. Mayo Clin Proc. 2011;86:960–7.  https://doi.org/10.4065/mcp.2011.0010.CrossRefPubMedGoogle Scholar
  10. 10.
    Schildkraut JM, Myers RH, Cupples LA, et al. Coronary risk associated with age and sex of parental heart disease in the Framingham Study. Am J Cardiol. 1989;64:555–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Gaeta G, De Michele M, Cuomo S, et al. Arterial abnormalities in the offspring of patients with premature myocardial infarction. N Engl J Med. 2000;343:840–6.  https://doi.org/10.1056/NEJM200009213431203.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Slack J, Evans KA. The increased risk of death from ischaemic heart disease in first degree relatives of 121 men and 96 women with ischaemic heart disease. J Med Genet. 1966;3:239–57.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Juonala M, Viikari JSA, Räsänen L, et al. Young adults with family history of coronary heart disease have increased arterial vulnerability to metabolic risk factors. Arterioscler Thromb Vasc Biol. 2006;26.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham Study. JAMA. 1979;241:2035–8.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Preis SR, Hwang S-J, Coady S, et al. Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation. 2009;119:1728–35.  https://doi.org/10.1161/CIRCULATIONAHA.108.829176.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Garcia MJ, McNamara PM, Gordon T, Kannell WB. Morbidity and mortality in diabetics in the Framingham population: sixteen year follow-up study. Diabetes. 1974;23.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kuller LH, Velentgas P, Barzilay J, et al. Diabetes mellitus: subclinical cardiovascular disease and risk of incident cardiovascular disease and all-cause mortality. Arterioscler Thromb Vasc Biol. 2000;20:823–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Creager MA, Lüscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation. 2003;108:1527–32.  https://doi.org/10.1161/01.CIR.0000091257.27563.32.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care. 1993;16:434–44.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics 2017 At-a-Glance. http://professional.heart.org/idc/groups/ahamah-public/@wcm/@sop/@smd/documents/downloadable/ucm_491265.pdf (2017). Accessed 10 July 2017.
  21. 21.
    Howard BV, Rodriguez BL, Bennett PH, et al. Prevention conference VI: diabetes and cardiovascular disease. Circulation. 2002;105.Google Scholar
  22. 22.
    Chait A, Bornfeldt KE. Diabetes and atherosclerosis: is there a role for hyperglycemia? J Lipid Res. 2009;50(Suppl):S335–9.  https://doi.org/10.1194/jlr.R800059-JLR200.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tominaga M, Eguchi H, Manaka H, et al. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes study. Diabetes Care. 1999;22:920–4.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Foley RN, Parfrey PS, Sarnak MJ. Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol. 1998;9:S16–23.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Sarnak MJ, Levey AS, Schoolwerth AC, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American heart association councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation. 2003;108:2154–69.  https://doi.org/10.1161/01.CIR.0000095676.90936.80.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Balla S, Nusair MB, Alpert MA. Risk factors for atherosclerosis in patients with chronic kidney disease: recognition and management. Curr Opin Pharmacol. 2013;13:192–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Tonelli M, Wiebe N, Culleton B, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol. 2006;17:2034–47.  https://doi.org/10.1681/ASN.2005101085.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Culleton BF, Larson MG, Wilson PWF, et al. Cardiovascular disease and mortality in a community-based cohort with mild renal insufficiency. Kidney Int. 1999;56:2214–9.  https://doi.org/10.1046/j.1523-1755.1999.00773.x.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.  https://doi.org/10.1056/NEJMoa041031.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67:968–77.PubMedCrossRefGoogle Scholar
  31. 31.
    McGill HC, McMahan CA, Herderick EE, et al. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation. 2002;105:2712–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Caleyachetty R, Thomas GN, Toulis KA, et al. Metabolically healthy obese and incident cardiovascular disease events among 3.5 million men and women. J Am Coll Cardiol. 2017;70:1429–37.  https://doi.org/10.1016/j.jacc.2017.07.763.CrossRefPubMedGoogle Scholar
  33. 33.
    Sharma S, Batsis JA, Coutinho T, et al. Normal-weight central obesity and mortality risk in older adults with coronary artery disease. Mayo Clin Proc. 2016;91:343–51.  https://doi.org/10.1016/j.mayocp.2015.12.007.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Herrera BM, Lindgren CM. The genetics of obesity. Curr Diab Rep. 2010;10:498–505.  https://doi.org/10.1007/s11892-010-0153-z.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ekelund L-G, Haskell WL, Johnson JL, et al. Physical fitness as a predictor of cardiovascular mortality in asymptomatic North American men. N Engl J Med. 1988;319:1379–84.  https://doi.org/10.1056/NEJM198811243192104.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tanasescu M, Leitzmann MF, Rimm EB, et al. Exercise type and intensity in relation to coronary heart disease in men. JAMA. 2000;288:1994–2000.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301:2024–35.  https://doi.org/10.1001/jama.2009.681.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shah RV, Murthy VL, Colangelo LA, et al. Association of fitness in young adulthood with survival and cardiovascular risk. JAMA Intern Med. 2016;176:87.  https://doi.org/10.1001/jamainternmed.2015.6309.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sui X, LaMonte MJ, Laditka JN, et al. Cardiorespiratory fitness and adiposity as mortality predictors in older adults. JAMA. 2007;298:2507–16.  https://doi.org/10.1001/jama.298.21.2507.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    McAuley PA, Kokkinos PF, Oliveira RB, et al. Obesity paradox and cardiorespiratory fitness in 12,417 male veterans aged 40 to 70 years. Mayo Clin Proc. 2010;85:115–21.  https://doi.org/10.4065/mcp.2009.0562.CrossRefPubMedGoogle Scholar
  41. 41.
    Kannel WB, Dawber TR, McGee DL. Perspectives on systolic hypertension. The Framingham Study. Circulation. 1980;61:1179–82.PubMedCrossRefGoogle Scholar
  42. 42.
    MacMahon S, Peto R, Cutler J, et al. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet (London, England). 1990;335:765–74.CrossRefGoogle Scholar
  43. 43.
    Stamler J, Stamler R, Neaton JD. Blood pressure, systolic and diastolic, and cardiovascular risks. US population data. Arch Intern Med. 1993;153:598–615.PubMedCrossRefGoogle Scholar
  44. 44.
    Kannel WB. Blood pressure as a cardiovascular risk factor: prevention and treatment. JAMA. 1996;275:1571–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Lakka TA, Salonen R, Kaplan GA, Salonen JT. Blood pressure and the progression of carotid atherosclerosis in middle-aged men. Hypertens. 1999;34:51–6. (Dallas, Tex 1979).PubMedCrossRefGoogle Scholar
  46. 46.
    Five-year findings of the hypertension detection and follow-up program. I. Reduction in mortality of persons with high blood pressure, including mild hypertension. JAMA. 1979;277:157–66 (Hypertension Detection and Follow-up Program Cooperative Group, 1997).Google Scholar
  47. 47.
    Collins R, Peto R, MacMahon S, et al. Blood pressure, stroke, and coronary heart disease. Part 2, Short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet (London, England). 1990;335:827–38.CrossRefGoogle Scholar
  48. 48.
    Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA. 1991;265:3255–64 (SHEP Cooperative Research Group).Google Scholar
  49. 49.
    Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet (London, England). 1998;351:1755–62.CrossRefGoogle Scholar
  50. 50.
    Allen N, Berry JD, Ning H, et al. Impact of blood pressure and blood pressure change during middle age on the remaining lifetime risk for cardiovascular disease: the cardiovascular lifetime risk pooling project. Circulation. 2012;125:37–44.  https://doi.org/10.1161/CIRCULATIONAHA.110.002774.CrossRefPubMedGoogle Scholar
  51. 51.
    Vasan RS, Larson MG, Leip EP, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med. 2001;345:1291–7.  https://doi.org/10.1056/NEJMoa003417.CrossRefPubMedGoogle Scholar
  52. 52.
    English JP, Willius FA, Berkson J. Tobacco and coronary disease. JAMA. 1940;115:1327.  https://doi.org/10.1001/jama.1940.02810420013004.CrossRefGoogle Scholar
  53. 53.
    Hammond EC, Horn D. The relationship between human smoking habits and death rates: a follow-up study of 187,766 men. JAMA. 1954;155:1316–28.CrossRefGoogle Scholar
  54. 54.
    Hammond EC, Horn D. Smoking and death rates: report on forty-four months of follow-up of 187,783 men. 2. Death rates by cause. JAMA. 1958;166:1294–308.CrossRefGoogle Scholar
  55. 55.
    Doll R, Hill AB. The mortality of doctors in relation to their smoking habits; a preliminary report. Br Med J. 1954;1:1451–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Doyle JT, Dawber TR, Kannel WB, et al. The relationship of cigarette smoking to coronary heart disease; The second report of the combined experience of the Albany, NY, and Framingham, mass, studies. JAMA. 1964;190:886–90.PubMedGoogle Scholar
  57. 57.
    Howard G, Wagenknecht LE, Burke GL, et al. Cigarette smoking and progression of atherosclerosis: the Atherosclerosis Risk in Communities (ARIC) Study. JAMA. 1998;279:119–24.PubMedCrossRefGoogle Scholar
  58. 58.
    Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol. 2004;43:1731–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Barnoya J, Glantz SA. Cardiovascular effects of secondhand smoke: nearly as large as smoking. Circulation. 2005;111:2684–98.  https://doi.org/10.1161/CIRCULATIONAHA.104.492215.CrossRefPubMedGoogle Scholar
  60. 60.
    Cizek SM, Bedri S, Talusan P, et al. Risk factors for atherosclerosis and the development of preatherosclerotic intimal hyperplasia. Cardiovasc Pathol. 2007;16:344–50.  https://doi.org/10.1016/j.carpath.2007.05.007.CrossRefPubMedGoogle Scholar
  61. 61.
    Rea TD, Heckbert SR, Kaplan RC, et al. Smoking status and risk for recurrent coronary events after myocardial infarction. Ann Intern Med. 2002;137:494–500.PubMedCrossRefGoogle Scholar
  62. 62.
    Friedman M, Friedland GW. Medicine’s 10 greatest discoveries. New Haven & London: Yale University Press;1998.Google Scholar
  63. 63.
    Gofman JW, Lindgren F. The role of lipids and lipoproteins in atherosclerosis. Science. 1950;111:166–71.PubMedCrossRefGoogle Scholar
  64. 64.
    Konstantinov IE, Mejevoi N, Anichkov NM. Nikolai N. Anichkov and his theory of atherosclerosis. Texas Hear Inst J. 2006;33:417–23.Google Scholar
  65. 65.
    Gofman JW, Lindgren FT, Elliott H. Ultracentrifugal studies of lipoproteins of human serum. J Biol Chem. 1949;179:973–9.PubMedGoogle Scholar
  66. 66.
    Gofman JW. Serum lipoproteins and the evaluation of atherosclerosis. Ann N Y Acad Sci. 1956;64:590–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Gofman JW, Jones HB, Lindgren FT, et al. Blood lipids and human atherosclerosis. Circulation. 1950;2:161–78.PubMedCrossRefGoogle Scholar
  68. 68.
    Kinsell LW, Partridge J, Boling L, et al. Dietary modification of serum cholesterol and phospholipid levels. J Clin Endocrinol Metab. 1952;12:909–13.  https://doi.org/10.1210/jcem-12-7-909.CrossRefPubMedGoogle Scholar
  69. 69.
    Ahrens EH, Blankenhorn DH, Tsaltas TT. Effect on human serum lipids of substituting plant for animal fat in diet. Proc Soc Exp Biol Med. 1954;86:872–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Smit L, van Duin S. About the seven countries study. In: Online Sci. http://www.sevencountriesstudy.com/about-the-study/ (2016). Accessed 9 May 2017.
  71. 71.
    Keys A. Atherosclerosis: a problem in newer public health. J Mt Sinai Hosp N Y. 1953;20:118–39.PubMedGoogle Scholar
  72. 72.
    Keys A, Anderson JT, Fidanza F, et al. Effects of diet on blood lipids in man. Clin Chem. 1955;1:34.PubMedGoogle Scholar
  73. 73.
    Yerushalmy J, Hilleboe HE. Fat in the diet and mortality from heart disease; a methodologic note. N Y State J Med. 1957;57:2343–54.PubMedGoogle Scholar
  74. 74.
    Jacobs DR, Adachi H, Mulder I, et al. Cigarette smoking and mortality risk: twenty-five-year follow-up of the seven countries study. Arch Intern Med. 1999;159:733–40.PubMedCrossRefGoogle Scholar
  75. 75.
    van den Hoogen PCW, Feskens EJM, Nagelkerke NJD, et al. The relation between blood pressure and mortality due to coronary heart disease among men in different parts of the world. N Engl J Med. 2000;342:1–8.  https://doi.org/10.1056/NEJM200001063420101.CrossRefPubMedGoogle Scholar
  76. 76.
    Keys A, Aravanis C, Blackburn H, et al. Coronary heart disease: overweight and obesity as risk factors. Ann Intern Med. 1972;77:15–27.PubMedCrossRefGoogle Scholar
  77. 77.
    Verschuren WM, Jacobs DR, Bloemberg BP, et al. Serum total cholesterol and long-term coronary heart disease mortality in different cultures. Twenty-five-year follow-up of the seven countries study. JAMA. 1995;274:131–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Blackburn H. On the trail of heart attacks in seven countries. http://sph.umn.edu/site/docs/epi/SPH.SevenCountriesStudy.pdf (1995).
  79. 79.
    Kromhout D, Menotti A, Blackburn H. The seven countries study: a scientific adventure in cardiovascular disease epidemiology. Utrecht; 1994.Google Scholar
  80. 80.
    Harcombe Z. Keys six countries graph; 2017. http://www.zoeharcombe.com/2017/02/keys-six-countries-graph/.
  81. 81.
    Minger D. Rescuing good health from bad science. The truth about ancel keys: we ’ve all got it wrong; 2011. https://deniseminger.com/2011/12/22/the-truth-about-ancel-keys-weve-all-got-it-wrong/.
  82. 82.
    Anderson KM, Castelli WP, Levy D. Cholesterol and mortality: 30 years of follow-up from the Framingham Study. JAMA. 1987;257:2176–80.  https://doi.org/10.1001/jama.1987.03390160062027.CrossRefPubMedGoogle Scholar
  83. 83.
    Frantz ID, Dawson EA, Ashman PL, et al. Test of effect of lipid lowering by diet on cardiovascular risk. The Minnesota Coronary survey. Arterioscler Thromb Vasc Biol. 1989;9:129–35.  https://doi.org/10.1161/01.ATV.9.1.129.CrossRefGoogle Scholar
  84. 84.
    O’Connor A. A decades-old study, rediscovered, challenges advice on saturated fat. In: New York Times; 2016. https://well.blogs.nytimes.com/2016/04/13/a-decades-old-study-rediscovered-challenges-advice-on-saturated-fat/. Accessed 19 Sep 2017.
  85. 85.
    Leren P. The Oslo diet-heart study. Eleven-year report. Circulation. 1970;42:935–42.PubMedCrossRefGoogle Scholar
  86. 86.
    Dayton S, Pearce ML. Diet high in unsaturated fat. A controlled clinical trial. Minn Med. 1969;52:1237–42.PubMedGoogle Scholar
  87. 87.
    Turpeinen O, Karvonen MJ, Pekkarinen M, et al. Dietary prevention of coronary heart disease: the Finnish mental hospital study. Int J Epidemiol. 1979;8:99–118.PubMedCrossRefGoogle Scholar
  88. 88.
    McMichael J. Fats and atheroma: an inquest. Br Med J. 1979;1:173–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Oliver MF. Lipid lowering and ischaemic heart disease. Acta Med Scand Suppl. 1981;651:285–93.PubMedGoogle Scholar
  90. 90.
    Ahrens EH. Dietary fats and coronary heart disease: unfinished business. Lancet (London, England). 1979;2:1345–8.CrossRefGoogle Scholar
  91. 91.
    Stehbens WE. Coronary heart disease, hypercholesterolemia, and atherosclerosis I. False premises. Exp Mol Pathol. 2001;70:103–19.  https://doi.org/10.1006/exmp.2000.2340.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Stehbens WE. Coronary heart disease, hypercholesterolemia, and atherosclerosis II. Misrepresented Data. Exp Mol Pathol. 2001;70:120–39.  https://doi.org/10.1006/exmp.2000.2339.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Stehbens WE. The quality of epidemiological data in coronary heart disease and atherosclerosis. J Clin Epidemiol. 1993;46:1337–46.PubMedCrossRefGoogle Scholar
  94. 94.
    Steinberg D. Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: Part I. J Lipid Res. 2004;45:1583–93.  https://doi.org/10.1194/jlr.R400003-JLR200.CrossRefPubMedGoogle Scholar
  95. 95.
    Steinberg D. Lowering blood cholesterol to prevent heart disease. NIH Consensus Development Conference statement. Arterioscler Thromb Vasc Biol. 1985;5:404–12.  https://doi.org/10.1161/01.ATV.5.4.404.CrossRefGoogle Scholar
  96. 96.
    Cabin HS, Roberts WC. Relation of serum total cholesterol and triglyceride levels to the amount and extent of coronary arterial narrowing by atherosclerotic plaque in coronary heart disease. Quantitative analysis of 2,037 five mm segments of 160 major epicardial coronary arteries in 40 necropsy patients. Am J Med. 1982;73:227–34.PubMedCrossRefGoogle Scholar
  97. 97.
    Marek Z, Jaegermann K, Ciba T. Atherosclerosis and levels of serum cholesterol in postmortem investigations. Am Heart J. 1962;63:768–74.PubMedCrossRefGoogle Scholar
  98. 98.
    Hecht HS, Superko HR, Smith LK, McColgan BP. Relation of coronary artery calcium identified by electron beam tomography to serum lipoprotein levels and implications for treatment. Am J Cardiol. 2001;87:406–12.PubMedCrossRefGoogle Scholar
  99. 99.
    Nitter-Hauge S, Enge I. Relation between blood lipid levels and angiographically evaluated obstructions in coronary arteries. Br Heart J. 1973;35:791–5.PubMedCrossRefGoogle Scholar
  100. 100.
    Krishnaswami S, Jose VJ, Joseph G. Lack of correlation between coronary risk factors and CAD severity. Int J Cardiol. 1994;47:37–43.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Ravnskov U. Is atherosclerosis caused by high cholesterol? QJM. 2002;95:397–403.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Ramsden CE, Zamora D, Majchrzak-Hong S, et al. Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota Coronary Experiment (1968–73). BMJ. 2016;353:i1246.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Ravnskov U, Diamond DM, Hama R, et al. Lack of an association or an inverse association between low-density-lipoprotein cholesterol and mortality in the elderly: a systematic review. BMJ Open. 2016;6:e010401.  https://doi.org/10.1136/bmjopen-2015-010401.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344:1383–9.  https://doi.org/10.1016/S0140-6736(94)90566-5.CrossRefGoogle Scholar
  105. 105.
    Ross SD, Allen IE, Connelly JE, et al. Clinical outcomes in statin treatment trials: a meta-analysis. Arch Intern Med. 1999;159:1793–802.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Vrecer M, Turk S, Drinovec J, Mrhar A. Use of statins in primary and secondary prevention of coronary heart disease and ischemic stroke. Meta-analysis of randomized trials. Int J Clin Pharmacol Ther. 2003;41:567–77.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    LaRosa JC, Grundy SM, Waters DD, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;352:1425–35.  https://doi.org/10.1056/NEJMoa050461.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495–504.  https://doi.org/10.1056/NEJMoa040583.CrossRefGoogle Scholar
  109. 109.
    De Backer G, Ambrosioni E, Borch-Johnsen K, et al. European guidelines on cardiovascular disease prevention in clinical practice. Third joint task force of european and other societies on cardiovascular disease prevention in clinical practice. Eur Heart J. 2003;24:1601–10.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Ray KK, Seshasai SRK, Erqou S, et al. Statins and all-cause mortality in high-risk primary prevention: a meta-analysis of 11 randomized controlled trials involving 65,229 participants. Arch Intern Med. 2010;170:1024–31.  https://doi.org/10.1001/archinternmed.2010.182.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    DuBroff R, de Lorgeril M. Cholesterol confusion and statin controversy. World J Cardiol. 2015;7:404–9.  https://doi.org/10.4330/wjc.v7.i7.404.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    de Lorgeril M, Salen P, Martin JL, et al. Mediterranean dietary pattern in a randomized trial: prolonged survival and possible reduced cancer rate. Arch Intern Med. 1998;158:1181–7.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Chiuve SE, Fung TT, Rexrode KM, et al. Adherence to a low-risk, healthy lifestyle and risk of sudden cardiac death among women. JAMA. 2011;306.  https://doi.org/10.1001/jama.2011.907.
  114. 114.
    Åkesson A, Larsson SC, Discacciati A, Wolk A. Low-risk diet and lifestyle habits in the primary prevention of myocardial infarction in men: a population-based prospective cohort study. J Am Coll Cardiol. 2014;64:1299–306.  https://doi.org/10.1016/j.jacc.2014.06.1190.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Roth EM, McKenney JM, Hanotin C, et al. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med. 2012;367:1891–900.  https://doi.org/10.1056/NEJMoa1201832.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Stein EA, Gipe D, Bergeron J, et al. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet (London, England). 2012;380:29–36.  https://doi.org/10.1016/S0140-6736(12)60771-5.CrossRefGoogle Scholar
  117. 117.
    Stein EA, Mellis S, Yancopoulos GD, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med. 2012;366:1108–18.  https://doi.org/10.1056/NEJMoa1105803.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet. 2014;383:60–8.  https://doi.org/10.1016/S0140-6736(13)61914-5.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Fitzgerald K, White S, Borodovsky A, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376:41–51.  https://doi.org/10.1056/NEJMoa1609243.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Narasimhan SD. Beyond statins: new therapeutic frontiers for cardiovascular disease. Cell. 2017;169:971–3.  https://doi.org/10.1016/j.cell.2017.05.032.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Frothingham C. The relationship between acute infectious diseases and arterial lesions. Arch Int Med. 1911;8:153–62.CrossRefGoogle Scholar
  122. 122.
    Klotz O, Manning M. Fatty streaks in the intima of arteries. J Pathol Bacteriol. 1911;16:211–20.CrossRefGoogle Scholar
  123. 123.
    Martin H. Considérations générales sur la pathogénie des scléroses dystrophiques. In: Revue de Medecine; 1886. p. 1–26.Google Scholar
  124. 124.
    Thérèse. Etude anatomo-pathologiqueet expérimentale sur les artérites secondaires aux maladies infectieuses. Thèse de Paris; 1893.Google Scholar
  125. 125.
    Simnitzky. Über die Häufigkeit von arteriosklerotischen Veränderungen in der Aorta jugendlicher Individuen. Zeitschrift für Heilkd. 1903;24:177.Google Scholar
  126. 126.
    Wiesel. Die Erkrankungen arterieller Gefässe im Verlaufe akuter Infektionen. Zeitschrift für Heilkd. 1906;27:262.Google Scholar
  127. 127.
    Zinserling. Über anisotrope Verfettung der Arterienintima bei Infektionskrankheiten. Zentralblatt für Allg Pathol. 1913;24:627.Google Scholar
  128. 128.
    Thayer W. On the late effects of typhoid fever on the heart and vessels. Am J Med Sci. 1904;77:391–422.CrossRefGoogle Scholar
  129. 129.
    Thayer W, Brush C. The relation of acute infections and arteriosclerosis. JAMA. 1904;43:583–4.Google Scholar
  130. 130.
    Osler W. Diseases of the arteries. In: Osler W, MacCrae T, editors. Modern medicine. Its theory and practice in original contributions by Americans and foreign authors. Philadelphia: Lea & Febiger; 1908. p. 426–47.Google Scholar
  131. 131.
    Faber A. Die Arteriosklerose; ihre pathologische Anatomie, ihre Pathogenese und Ätiologie. Jena: Gustav Fischer; 1912.Google Scholar
  132. 132.
    Ophüls W. Arteriosclerosis cardiovascular disease: their relation to infectious diseases, 1st ed. California: University Press, Standford University; 1921.Google Scholar
  133. 133.
    Gilbert L. Artérites infectieuses expérimentales. Compt rend Soc biol. 1889.Google Scholar
  134. 134.
    Crocq. Contribution a L’étude expérimentale des artérites infectieuses. Arch méd exp. 1894;6:583.Google Scholar
  135. 135.
    Boinet R. Recherches expérimentales sur les aortites. Arch méd exp. 1897;9:902.Google Scholar
  136. 136.
    Klotz. The experimental production of arteriosclerosis. Br Med J. 1906;2:1767.Google Scholar
  137. 137.
    Collins SD. Excess mortality from causes other than influenza and pneumonia during influenza epidemics. Public Heal Reports. 1932;47:2159.  https://doi.org/10.2307/4580606.CrossRefGoogle Scholar
  138. 138.
    Stocks P. The effect of influenza epidemics on the certified cause of death. Lancet. 1935;226:386–95.CrossRefGoogle Scholar
  139. 139.
    Fabricant CG, Fabricant J, Litrenta MM, Minick CR. Virus-induced atherosclerosis. J Exp Med. 1978;148:335–40.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Moazed TC, Campbell LA, Rosenfeld ME, et al. Chlamydia pneumoniae infection accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. J Infect Dis. 1999;180:238–41.  https://doi.org/10.1086/314855.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Hu H, Pierce GN, Zhong G. The atherogenic effects of chlamydia are dependent on serum cholesterol and specific to Chlamydia pneumoniae. J Clin Invest. 1999;103:747–53.  https://doi.org/10.1172/JCI4582.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Li L, Messas E, Batista EL, et al. Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterozygous apolipoprotein E-deficient murine model. Circulation. 2002;105:861–7.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Jia R, Kurita-Ochiai T, Oguchi S, Yamamoto M. Periodontal pathogen accelerates lipid peroxidation and atherosclerosis. J Dent Res. 2013;92:247–52.  https://doi.org/10.1177/0022034513475625.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Chen X, Wang J, Wang Y, et al. Helicobacter pylori infection enhances atherosclerosis in high-cholesterol diet fed C57BL/6 mice. Zhonghua Xin Xue Guan Bing Za Zhi. 2010;38:259–63.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Hsich E, Zhou YF, Paigen B, et al. Cytomegalovirus infection increases development of atherosclerosis in Apolipoprotein-E knockout mice. Atherosclerosis. 2001;156:23–8.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Vliegen I, Herngreen SB, Grauls GELM, et al. Mouse cytomegalovirus antigenic immune stimulation is sufficient to aggravate atherosclerosis in hypercholesterolemic mice. Atherosclerosis. 2005;181:39–44.  https://doi.org/10.1016/j.atherosclerosis.2004.12.035.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Vliegen I, Duijvestijn A, Grauls G, et al. Cytomegalovirus infection aggravates atherogenesis in apoE knockout mice by both local and systemic immune activation. Microbes Infect. 2004;6:17–24.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Rosenfeld ME, Campbell LA. Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb Haemost. 2011;106:858–67.  https://doi.org/10.1160/TH11-06-0392.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Campbell LA, Rosenfeld ME. Infection and atherosclerosis development. Arch Med Res. 2015;46:339–50.  https://doi.org/10.1016/j.arcmed.2015.05.006.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Sorrentino R, Yilmaz A, Schubert K, et al. A single infection with Chlamydia pneumoniae is sufficient to exacerbate atherosclerosis in ApoE deficient mice. Cell Immunol. 2015;294:25–32.  https://doi.org/10.1016/j.cellimm.2015.01.007.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Blessing E, Campbell LA, Rosenfeld ME, et al. Chlamydia pneumoniae infection accelerates hyperlipidemia induced atherosclerotic lesion development in C57BL/6 J mice. Atherosclerosis. 2001;158:13–7.  https://doi.org/10.1016/S0021-9150(00)00758-9.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Ezzahiri R, Nelissen-Vrancken HJMG, Kurvers HAJM, et al. Chlamydophila pneumoniae (Chlamydia pneumoniae) accelerates the formation of complex atherosclerotic lesions in Apo E3-Leiden mice. Cardiovasc Res. 2002;56:269–76.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Muhlestein JB. Chlamydia pneumoniae—Induced atherosclerosis in a rabbit model. J Infect Dis. 2000;181:S505–7.  https://doi.org/10.1086/315627.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Haidari M, Wyde PR, Litovsky S, et al. Influenza virus directly infects, inflames, and resides in the arteries of atherosclerotic and normal mice. Atherosclerosis. 2010;208:90–6.  https://doi.org/10.1016/j.atherosclerosis.2009.07.028.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Naghavi M, Wyde P, Litovsky S, et al. Influenza infection exerts prominent inflammatory and thrombotic effects on the atherosclerotic plaques of apolipoprotein E-deficient mice. Circulation. 2003;107:762–8.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Jain A, Batista EL, Serhan C, et al. Role for periodontitis in the progression of lipid deposition in an animal model. Infect Immun. 2003;71:6012–8.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Lalla E, Lamster IB, Hofmann MA, et al. Oral infection with a periodontal pathogen accelerates early atherosclerosis in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol. 2003;23:1405–11.  https://doi.org/10.1161/01.ATV.0000082462.26258.FE.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Watson C, Alp NJ. Role of Chlamydia pneumoniae in atherosclerosis. Clin Sci (Lond). 2008;114:509–31.  https://doi.org/10.1042/CS20070298.CrossRefGoogle Scholar
  159. 159.
    Al-Ghamdi A, Jiman-Fatani AA, El-Banna H. Role of Chlamydia pneumoniae, Helicobacter pylori and cytomegalovirus in coronary artery disease. Pak J Pharm Sci. 2011;24:95–101.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Boman J, Hammerschlag MR. Chlamydia pneumoniae and atherosclerosis: critical assessment of diagnostic methods and relevance to treatment studies. Clin Microbiol Rev. 2002;15:1–20.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Saikku P, Leinonen M, Mattila K, et al. Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet (London, England). 1988;2:983–6.CrossRefGoogle Scholar
  162. 162.
    Jha HC, Prasad J, Mittal A. High immunoglobulin A seropositivity for combined Chlamydia pneumoniae, Helicobacter pylori infection, and high-sensitivity C-reactive protein in coronary artery disease patients in India can serve as atherosclerotic marker. Heart Vessels. 2008;23:390–6.  https://doi.org/10.1007/s00380-008-1062-9.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Filardo S, Di Pietro M, Farcomeni A, et al. Chlamydia pneumoniae-mediated inflammation in atherosclerosis: a meta-analysis. Mediat Inflamm. 2015;2015:1–9.  https://doi.org/10.1155/2015/378658.CrossRefGoogle Scholar
  164. 164.
    Park MJ, Choi SH, Kim D, et al. Association between Helicobacter pylori seropositivity and the coronary artery calcium score in a screening population. Gut Liver. 2011;5:321–7.  https://doi.org/10.5009/gnl.2011.5.3.321.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Nieto FJ, Adam E, Sorlie P, et al. Cohort study of cytomegalovirus infection as a risk factor for carotid intimal-medial thickening, a measure of subclinical atherosclerosis. Circulation. 1996;94:922–7.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Bloemenkamp DGM, Mali WPTM, Visseren FLJ, van der Graaf Y. Meta-analysis of sero-epidemiologic studies of the relation between Chlamydia pneumoniae and atherosclerosis: does study design influence results? Am Heart J. 2003;145:409–17.  https://doi.org/10.1067/mhj.2003.20.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Longo-Mbenza B, Nkondi M, et al. Helicobacter pylori infection is identified as a cardiovascular risk factor in Central Africans. Vasc Health Risk Manag. 2012;6:455.  https://doi.org/10.2147/VHRM.S28680.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Roberts ET, Haan MN, Dowd JB, Aiello AE. Cytomegalovirus antibody levels, inflammation, and mortality among elderly Latinos over 9 years of follow-up. Am J Epidemiol. 2010;172:363–71.  https://doi.org/10.1093/aje/kwq177.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Tamer GS, Tengiz I, Ercan E, et al. Helicobacter pylori seropositivity in patients with acute coronary syndromes. Dig Dis Sci. 2009;54:1253–6.  https://doi.org/10.1007/s10620-008-0482-9.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Folsom AR, Nieto FJ, Sorlie P, et al. Helicobacter pylori seropositivity and coronary heart disease incidence. Atherosclerosis Risk In Communities (ARIC) study investigators. Circulation. 1998;98:845–50.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Ozdogru I, Kalay N, Dogan A, et al. The relationship between Helicobacter pylori IgG titre and coronary atherosclerosis. Acta Cardiol. 2007;62:501–5.  https://doi.org/10.2143/AC.62.5.2023414.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Danesh J, Whincup P, Walker M, et al. Chlamydia pneumoniae IgG titres and coronary heart disease: prospective study and meta-analysis. BMJ. 2000;321:208–13.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Spodick DH, Flessas AP, Johnson MM. Association of acute respiratory symptoms with onset of acute myocardial infarction: prospective investigation of 150 consecutive patients and matched control patients. Am J Cardiol. 1984;53:481–2.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Penttinen J, Valonen P. The risk of myocardial infarction among Finnish farmers seeking medical care for an infection. Am J Public Health. 1996;86:1440–2.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Spencer FA, Goldberg RJ, Becker RC, Gore JM. Seasonal distribution of acute myocardial infarction in the second National Registry of Myocardial Infarction. J Am Coll Cardiol. 1998;31:1226–33.PubMedCrossRefGoogle Scholar
  176. 176.
    Sheth T, Nair C, Muller J, Yusuf S. Increased winter mortality from acute myocardial infarction and stroke: the effect of age. J Am Coll Cardiol. 1999;33:1916–9.  https://doi.org/10.1016/s0735-1097(99)00137-0.CrossRefPubMedGoogle Scholar
  177. 177.
    Barnes M, Heywood AE, Mahimbo A, et al. Acute myocardial infarction and influenza: a meta-analysis of case-control studies. Heart. 2015;101:1738–47.  https://doi.org/10.1136/heartjnl-2015-307691.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Vlachopoulos CV, Terentes-Printzios DG, Aznaouridis KA, et al. Association between pneumococcal vaccination and cardiovascular outcomes: a systematic review and meta-analysis of cohort studies. Eur J Prev Cardiol. 2015;22:1185–99.  https://doi.org/10.1177/2047487314549512.CrossRefPubMedGoogle Scholar
  179. 179.
    Fountoulaki K, Tsiodras S, Polyzogopoulou E, et al. Beneficial effects of vaccination on cardiovascular events: myocardial infarction, stroke, heart failure. Cardiology. 2018;141:98–106.  https://doi.org/10.1159/000493572.CrossRefGoogle Scholar
  180. 180.
    Naghavi M, Barlas Z, Siadaty S, et al. Association of influenza vaccination and reduced risk of recurrent myocardial infarction. Circulation. 2000;102:3039–45.PubMedCrossRefGoogle Scholar
  181. 181.
    Siscovick DS, Raghunathan TE, Lin D, et al. Influenza vaccination and the risk of primary cardiac arrest. Am J Epidemiol. 2000;152:674–7.PubMedCrossRefGoogle Scholar
  182. 182.
    Xu Y, Wang Q, Liu Y, et al. Association between Helicobacter pylori infection and carotid atherosclerosis in patients with vascular dementia. J Neurol Sci. 2016;362:73–7.  https://doi.org/10.1016/j.jns.2016.01.025.CrossRefPubMedGoogle Scholar
  183. 183.
    Pietroiusti A, Diomedi M, Silvestrini M, et al. Cytotoxin-associated gene-A–positive Helicobacter pylori strains are associated with atherosclerotic stroke. Circulation. 2002;106:580–4.PubMedCrossRefGoogle Scholar
  184. 184.
    Diomedi M, Pietroiusti A, Silvestrini M, et al. CagA-positive Helicobacter pylori strains may influence the natural history of atherosclerotic stroke. Neurology. 2004;63:800–4.PubMedCrossRefGoogle Scholar
  185. 185.
    Sun J, Rangan P, Bhat SS, Liu L. A meta-analysis of the association between Helicobacter pylori infection and risk of coronary heart disease from published prospective studies. Helicobacter. 2016;21:11–23.  https://doi.org/10.1111/hel.12234.CrossRefPubMedGoogle Scholar
  186. 186.
    Mendall MA, Goggin PM, Molineaux N, et al. Relation of Helicobacter pylori infection and coronary heart disease. Br Heart J. 1994;71:437–9.PubMedCrossRefGoogle Scholar
  187. 187.
    Shmuely H, Wattad M, Solodky A, et al. Association of Helicobacter pylori with coronary artery disease and myocardial infarction assessed by myocardial perfusion imaging. Isr Med Assoc J. 2014;16:341–6.PubMedGoogle Scholar
  188. 188.
    Lockhart PB, Bolger AF, Papapanou PN, et al. Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association?: a scientific statement from the American Heart Association. Circulation. 2012;125:2520–44.  https://doi.org/10.1161/CIR.0b013e31825719f3.CrossRefPubMedGoogle Scholar
  189. 189.
    Trevisan M, Dorn J. The relationship between periodontal disease (pd) and cardiovascular disease (cvd). Mediterr J Hematol Infect Dis. 2010;2:e2010030.  https://doi.org/10.4084/MJHID.2010.030.CrossRefPubMedGoogle Scholar
  190. 190.
    Mattila KJ, Nieminen MS, Valtonen VV, et al. Association between dental health and acute myocardial infarction. BMJ. 1989;298:779–81.PubMedCrossRefGoogle Scholar
  191. 191.
    de Oliveira C, Watt R, Hamer M. Toothbrushing, inflammation, and risk of cardiovascular disease: results from Scottish Health Survey. BMJ. 2010;340:c2451.PubMedCrossRefGoogle Scholar
  192. 192.
    Amar S, Al-Hashemi J. Periodontal innate immune mechanisms relevant to atherosclerosis. In: Vascular responses to pathogens. NIH Public Access; 2015, pp. 75–85.Google Scholar
  193. 193.
    Tang K, Lin M, Wu Y, Yan F. Alterations of serum lipid and inflammatory cytokine profiles in patients with coronary heart disease and chronic periodontitis: a pilot study. J Int Med Res. 2011;39:238–48.  https://doi.org/10.1177/147323001103900126.CrossRefPubMedGoogle Scholar
  194. 194.
    Hansen GM, Egeberg A, Holmstrup P, Hansen PR. Relation of periodontitis to risk of cardiovascular and all-cause mortality (from a Danish nationwide cohort study). Am J Cardiol. 2016;118:489–93.  https://doi.org/10.1016/j.amjcard.2016.05.036.CrossRefPubMedGoogle Scholar
  195. 195.
    Beukers NGFM, van der Heijden GJMG, van Wijk AJ, Loos BG. Periodontitis is an independent risk indicator for atherosclerotic cardiovascular diseases among 60,174 participants in a large dental school in the Netherlands. J Epidemiol Community Health. 2017;71:37–42.  https://doi.org/10.1136/jech-2015-206745.CrossRefPubMedGoogle Scholar
  196. 196.
    Piconi S, Trabattoni D, Luraghi C, et al. Treatment of periodontal disease results in improvements in endothelial dysfunction and reduction of the carotid intima-media thickness. FASEB J. 2009;23:1196–204.  https://doi.org/10.1096/fj.08-119578.CrossRefPubMedGoogle Scholar
  197. 197.
    Toregeani JF, Nassar CA, Nassar PO, et al. Evaluation of periodontitis treatment effects on carotid intima-media thickness and expression of laboratory markers related to atherosclerosis. Gen Dent. 2016;64:55–62.PubMedGoogle Scholar
  198. 198.
    Orlandi M, Suvan J, Petrie A, et al. Association between periodontal disease and its treatment, flow-mediated dilatation and carotid intima-media thickness: a systematic review and meta-analysis. Atherosclerosis. 2014;236:39–46.  https://doi.org/10.1016/j.atherosclerosis.2014.06.002.CrossRefPubMedGoogle Scholar
  199. 199.
    Eberhard J, Grote K, Luchtefeld M, et al. Experimental gingivitis induces systemic inflammatory markers in young healthy individuals: a single-subject interventional study. PLoS One. 2013;8:e55265.  https://doi.org/10.1371/journal.pone.0055265.CrossRefPubMedGoogle Scholar
  200. 200.
    Ameriso SF, Fridman EA, Leiguarda RC, Sevlever GE. Detection of Helicobacter pylori in human carotid atherosclerotic plaques. Stroke. 2001;32:385–91.PubMedCrossRefGoogle Scholar
  201. 201.
    Ramirez JA. Isolation of Chlamydia pneumoniae from the coronary artery of a patient with coronary atherosclerosis. The Chlamydia pneumoniae/Atherosclerosis Study Group. Ann Intern Med. 1996;125:979–82.PubMedCrossRefGoogle Scholar
  202. 202.
    Kuo CC, Gown AM, Benditt EP, Grayston JT. Detection of Chlamydia pneumoniae in aortic lesions of atherosclerosis by immunocytochemical stain. Arterioscler Thromb J Vasc Biol. 1993;13:1501–4.CrossRefGoogle Scholar
  203. 203.
    Izadi M, Fazel M, Saadat SH, et al. Cytomegalovirus localization in atherosclerotic plaques is associated with acute coronary syndromes: report of 105 patients. Methodist Debakey Cardiovasc J. 2012;8:42–6.PubMedCrossRefGoogle Scholar
  204. 204.
    Kaplan M, Yavuz SS, Cinar B, et al. Detection of Chlamydia pneumoniae and Helicobacter pylori in atherosclerotic plaques of carotid artery by polymerase chain reaction. Int J Infect Dis. 2006;10:116–23.  https://doi.org/10.1016/j.ijid.2004.10.008.CrossRefPubMedGoogle Scholar
  205. 205.
    Kalayoglu MV, Libby P, Byrne GI. Chlamydia pneumoniae as an emerging risk factor in cardiovascular disease. JAMA. 2002;288:2724–31.PubMedCrossRefGoogle Scholar
  206. 206.
    Kilic A, Onguru O, Tugcu H, et al. Detection of cytomegalovirus and Helicobacter pylori DNA in arterial walls with grade III atherosclerosis by PCR. Polish J Microbiol. 2006;55:333–7.Google Scholar
  207. 207.
    Shor A, Phillips JI, Ong G, et al. Chlamydia pneumoniae in atheroma: consideration of criteria for causality. J Clin Pathol. 1998;51:812–7.PubMedCrossRefGoogle Scholar
  208. 208.
    Sessa R, Di Pietro M, Schiavoni G, et al. Chlamydia pneumoniae DNA in patients with symptomatic carotid atherosclerotic disease. J Vasc Surg. 2003;37:1027–31.  https://doi.org/10.1067/mva.2003.200.CrossRefPubMedGoogle Scholar
  209. 209.
    Jackson LA, Campbell LA, Kuo CC, et al. Isolation of Chlamydia pneumoniae from a carotid endarterectomy specimen. J Infect Dis. 1997;176:292–5.PubMedCrossRefGoogle Scholar
  210. 210.
    Maass M, Bartels C, Engel PM, et al. Endovascular presence of viable Chlamydia pneumoniae is a common phenomenon in coronary artery disease. J Am Coll Cardiol. 1998;31:827–32.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Rafferty B, Dolgilevich S, Kalachikov S, et al. Cultivation of Enterobacter hormaechei from human atherosclerotic tissue. J Atheroscler Thromb. 2011;18:72–81.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Farsak B, Yildirir A, Akyön Y, et al. Detection of Chlamydia pneumoniae and Helicobacter pylori DNA in human atherosclerotic plaques by PCR. J Clin Microbiol. 2000;38:4408–11.PubMedPubMedCentralGoogle Scholar
  213. 213.
    Melnick JL, Hu C, Burek J, et al. Cytomegalovirus DNA in arterial walls of patients with atherosclerosis. J Med Virol. 1994;42:170–4.PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Kozarov EV, Dorn BR, Shelburne CE, et al. Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arterioscler Thromb Vasc Biol. 2005;25:e17–8.  https://doi.org/10.1161/01.ATV.0000155018.67835.1a.CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Shanmugam NP, Harrison PM, Devlin J, et al. Selective use of endoscopic retrograde cholangiopancreatography in the diagnosis of biliary atresia in infants younger than 100 days. J Pediatr Gastroenterol Nutr. 2009;49:435–41.  https://doi.org/10.1097/MPG.0b013e3181a8711f.CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Haraszthy VI, Zambon JJ, Trevisan M, et al. Identification of periodontal pathogens in atheromatous plaques. J Periodontol. 2000;71:1554–60.  https://doi.org/10.1902/jop.2000.71.10.1554.CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Serra e Silva Filho W, Casarin RCV, Nicolela EL, et al. Microbial diversity similarities in periodontal pockets and atheromatous plaques of cardiovascular disease patients. PLoS One. 2014;9:e109761.  https://doi.org/10.1371/journal.pone.0109761.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Chhibber-Goel J, Singhal V, Bhowmik D, et al. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients. NPJ Biofilms Microbiomes. 2016;2:7.  https://doi.org/10.1038/s41522-016-0009-7.CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Koren O, Spor A, Felin J, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA. 2011;108(Suppl):4592–8.  https://doi.org/10.1073/pnas.1011383107.CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Eberhard J, Stumpp N, Winkel A, et al. Streptococcus mitis and Gemella haemolysans were simultaneously found in atherosclerotic and oral plaques of elderly without periodontitis-a pilot study. Clin Oral Investig. 2017;21:447–52.  https://doi.org/10.1007/s00784-016-1811-6.CrossRefGoogle Scholar
  221. 221.
    Renko J, Lepp PW, Oksala N, et al. Bacterial signatures in atherosclerotic lesions represent human commensals and pathogens. Atherosclerosis. 2008;201:192–7.  https://doi.org/10.1016/j.atherosclerosis.2008.01.006.CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Calandrini CA, Ribeiro AC, Gonnelli AC, et al. Microbial composition of atherosclerotic plaques. Oral Dis. 2014;20:e128–34.  https://doi.org/10.1111/odi.12205.CrossRefPubMedPubMedCentralGoogle Scholar
  223. 223.
    Mitra S, Drautz-Moses DI, Alhede M, et al. In silico analyses of metagenomes from human atherosclerotic plaque samples. Microbiome. 2015;3:38.  https://doi.org/10.1186/s40168-015-0100-y.CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Armingohar Z, Jørgensen JJ, Kristoffersen AK, et al. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis. J Oral Microbiol. 2014;6.  https://doi.org/10.3402/jom.v6.23408.CrossRefGoogle Scholar
  225. 225.
    Prasad A, Zhu J, Halcox JPJ, et al. Predisposition to atherosclerosis by infections: role of endothelial dysfunction. Circulation. 2002;106:184–90.PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Espinola-Klein C, Rupprecht HJ, Blankenberg S, et al. Impact of infectious burden on extent and long-term prognosis of atherosclerosis. Circulation. 2002;105:15–21.  https://doi.org/10.1161/hc0102.101362.CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Espinola-Klein C, Rupprecht HJ, Blankenberg S, et al. Impact of infectious burden on progression of carotid atherosclerosis. Stroke. 2002;33:2581–6.  https://doi.org/10.1161/01.STR.0000034789.82859.A4.CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Elkind MSV, Luna JM, Moon YP, et al. Infectious burden and carotid plaque thickness: the northern Manhattan study. Stroke. 2010;41.  https://doi.org/10.1161/STROKEAHA.109.571299.
  229. 229.
    Grayston JT. Antibiotic treatment of atherosclerotic cardiovascular disease. Circulation. 2003;107:1228–30.PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Gupta S, Leatham EW, Carrington D, et al. Elevated Chlamydia pneumoniae antibodies, cardiovascular events, and azithromycin in male survivors of myocardial infarction. Circulation. 1997;96:404–7.PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    Kowalski M. Helicobacter pylori (H. pylori) infection in coronary artery disease: influence of H. pylori eradication on coronary artery lumen after percutaneous transluminal coronary angioplasty. The detection of H. pylori specific DNA in human coronary atherosclerotic plaque. J Physiol Pharmacol. 2001;52:3–31.PubMedPubMedCentralGoogle Scholar
  232. 232.
    Blum A, Tamir S, Mualem K, et al. Endothelial dysfunction is reversible in Helicobacter pylori-positive subjects. Am J Med. 2011;124:1171–4.  https://doi.org/10.1016/j.amjmed.2011.08.015.CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Wu Y, Tao Z, Song C, et al. Overexpression of YKL-40 predicts plaque instability in carotid atherosclerosis with CagA-positive Helicobacter Pylori infection. PLoS One. 2013;8:e59996.  https://doi.org/10.1371/journal.pone.0059996.CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Nazligul Y, Aslan M, Horoz M, et al. The effect on serum myeloperoxidase activity and oxidative status of eradication treatment in patients Helicobacter pylori infected. Clin Biochem. 2011;44:647–9.  https://doi.org/10.1016/j.clinbiochem.2011.03.001.CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Kebapcilar L, Sari I, Renkal AH, et al. The influence of Helicobacter pylori eradication on leptin, soluble CD40 ligand, oxidative stress and body composition in patients with peptic ulcer disease. Intern Med. 2009;48:2055–9.PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    O’Connor CM, Dunne MW, Pfeffer MA, et al. Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial. JAMA. 2003;290:1459–66.  https://doi.org/10.1001/jama.290.11.1459.CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Grayston JT, Kronmal RA, Jackson LA, et al. Azithromycin for the secondary prevention of coronary events. N Engl J Med. 2005;352:1637–45.  https://doi.org/10.1056/NEJMoa043526.CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Jespersen CM, Als-Nielsen B, Damgaard M, et al. Randomised placebo controlled multicentre trial to assess short term clarithromycin for patients with stable coronary heart disease: CLARICOR trial. BMJ. 2006;332:22–7.  https://doi.org/10.1136/bmj.38666.653600.55.CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Song Z, Brassard P, Brophy JM. A meta-analysis of antibiotic use for the secondary prevention of cardiovascular diseases. Can J Cardiol. 2008;24:391–5.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Grayston JT, Belland RJ, Byrne GI, et al. Infection with Chlamydia pneumoniae as a cause of coronary heart disease: the hypothesis is still untested. Pathog Dis. 2015;73:1–9.  https://doi.org/10.1093/femspd/ftu015.CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Campbell LA, Rosenfeld ME. Persistent C. pneumoniae infection in atherosclerotic lesions: rethinking the clinical trials. Front Cell Infect Microbiol. 2014;4:1–4.  https://doi.org/10.3389/fcimb.2014.00034.CrossRefGoogle Scholar
  242. 242.
    Kuck K-H, Eggebrecht H, Figulla HR, et al. Qualitätskriterien zur Durchführung der transvaskulären Aortenklappenimplantation (TAVI). DGK. 2015;9:11–26.  https://doi.org/10.1007/s12181-014-0622-8.CrossRefGoogle Scholar
  243. 243.
    Zagari RM, Rabitti S, Eusebi LH, Bazzoli F. Treatment of Helicobacter pylori infection: a clinical practice update. Eur J Clin Invest. 2017.  https://doi.org/10.1111/eci.12857.CrossRefGoogle Scholar
  244. 244.
    Kim SY, Choi DJ, Chung J-W. Antibiotic treatment for Helicobacter pylori: is the end coming? World J Gastrointest Pharmacol Ther. 2015;6:183–98.  https://doi.org/10.4292/wjgpt.v6.i4.183.CrossRefPubMedPubMedCentralGoogle Scholar
  245. 245.
    Schlesselman L. Novel risk factors for atherosclerotic disease. http://www.medscape.org/viewarticle/418378 (2001). Accessed 9 May 2017.
  246. 246.
    Fruchart J-C. New risk factors for atherosclerosis and patient risk assessment. Circulation. 2004;109:III-15–III-19.  https://doi.org/10.1161/01.CIR.0000131513.33892.5b.CrossRefGoogle Scholar
  247. 247.
    McCully KS. Chemical pathology of homocysteine. I. Atherogenesis. Ann Clin Lab Sci. 1993;23:477–93.PubMedPubMedCentralGoogle Scholar
  248. 248.
    McCully KS. Homocysteine and the pathogenesis of atherosclerosis. Expert Rev Clin Pharmacol. 2015;8:211–9.  https://doi.org/10.1586/17512433.2015.1010516.CrossRefPubMedPubMedCentralGoogle Scholar
  249. 249.
    Smulders YM, Blom HJ. The homocysteine controversy. J Inherit Metab Dis. 2011;34:93–9.  https://doi.org/10.1007/s10545-010-9151-1.CrossRefPubMedPubMedCentralGoogle Scholar
  250. 250.
    Martí-Carvajal AJ, Solà I, Lathyris D, Dayer M. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev. 2017;8:CD006612.  https://doi.org/10.1002/14651858.CD006612.pub5.
  251. 251.
    Miller ER, Juraschek S, Pastor-Barriuso R, et al. Meta-analysis of folic acid supplementation trials on risk of cardiovascular disease and risk interaction with baseline homocysteine levels. Am J Cardiol. 2010;106:517–27.  https://doi.org/10.1016/j.amjcard.2010.03.064.CrossRefPubMedPubMedCentralGoogle Scholar
  252. 252.
    Effects of homocysteine-lowering with folic acid plus vitamin B12 vs placebo on mortality and major morbidity in myocardial infarction survivors. JAMA. 2010;303:2486.  https://doi.org/10.1001/jama.2010.840.
  253. 253.
    Bønaa KH, Njølstad I, Ueland PM, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med. 2006;354:1578–88.  https://doi.org/10.1056/NEJMoa055227.CrossRefPubMedPubMedCentralGoogle Scholar
  254. 254.
    Lonn E, Yusuf S, Arnold MJ, et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med. 2006;354:1567–77.  https://doi.org/10.1056/NEJMoa060900.CrossRefPubMedPubMedCentralGoogle Scholar
  255. 255.
    Jamison RL, Hartigan P, Kaufman JS, et al. Effect of homocysteine lowering on mortality and vascular disease in advanced chronic kidney disease and end-stage renal disease: a randomized controlled trial. JAMA. 2007;298:1163–70.  https://doi.org/10.1001/jama.298.10.1163.CrossRefPubMedPubMedCentralGoogle Scholar
  256. 256.
    Miller MR, Shaw CA, Langrish JP. From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Future Cardiol. 2012;8:577–602.  https://doi.org/10.2217/fca.12.43.CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    WHO | Ambient air pollution. In: WHO. http://www.who.int/gho/phe/outdoor_air_pollution/en/ (2016). Accessed 10 Oct 2017.
  258. 258.
    Donaldson K, Stone V, Clouter A, et al. Ultrafine particles. Occup Environ Med. 2001;58(211–6):199.Google Scholar
  259. 259.
    Cosselman KE, Navas-Acien A, Kaufman JD. Environmental factors in cardiovascular disease. Nat Rev Cardiol. 2015;12:627–42.  https://doi.org/10.1038/nrcardio.2015.152.CrossRefPubMedPubMedCentralGoogle Scholar
  260. 260.
    US EPA National Center for Environmental Assessment, Research Triangle Park Nc EMAG, Sacks J. Integrated Science Assessment (ISA) for particulate matter (Final Report, Dec 2009); 2009. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=216546. Accessed 10 Oct 2017.
  261. 261.
    WHO | Air quality guidelines-global update 2005. In: WHO; 2011. http://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/. Accessed 10 Oct 2017.
  262. 262.
    Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389:1907–18.  https://doi.org/10.1016/S0140-6736(17)30505-6.CrossRefPubMedPubMedCentralGoogle Scholar
  263. 263.
    Dockery DW, Pope CA, Xu X, et al. An association between air pollution and mortality in six U.S. Cities. N Engl J Med. 1993;329:1753–9.  https://doi.org/10.1056/NEJM199312093292401.CrossRefPubMedPubMedCentralGoogle Scholar
  264. 264.
    Pope CA, Thun MJ, Namboodiri MM, et al. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med. 1995;151:669–74.  https://doi.org/10.1164/ajrccm/151.3_Pt_1.669.CrossRefPubMedPubMedCentralGoogle Scholar
  265. 265.
    Hoek G, Brunekreef B, Goldbohm S, et al. Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet. 2002;360:1203–9.  https://doi.org/10.1016/S0140-6736(02)11280-3.CrossRefPubMedPubMedCentralGoogle Scholar
  266. 266.
    Beelen R, Stafoggia M, Raaschou-Nielsen O, et al. Long-term exposure to air pollution and cardiovascular mortality: an analysis of 22 European cohorts. Epidemiology. 2014;25:368–78.  https://doi.org/10.1097/EDE.0000000000000076.CrossRefPubMedPubMedCentralGoogle Scholar
  267. 267.
    Vedal S, Campen MJ, McDonald JD, et al. National Particle Component Toxicity (NPACT) initiative report on cardiovascular effects. Res Rep Health Eff Inst. 2013:5–8.Google Scholar
  268. 268.
    Beelen R, Raaschou-Nielsen O, Stafoggia M, et al. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet. 2014;383:785–95.  https://doi.org/10.1016/S0140-6736(13)62158-3.CrossRefPubMedPubMedCentralGoogle Scholar
  269. 269.
    Samet JM, Dominici F, Curriero FC, et al. Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med. 2000;343:1742–9.  https://doi.org/10.1056/NEJM200012143432401.CrossRefPubMedPubMedCentralGoogle Scholar
  270. 270.
    Katsouyanni K, Touloumi G, Spix C, et al. Short-term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from time series data from the APHEA project. Air pollution and health: a european approach. BMJ. 1997;314:1658–63.PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Katsouyanni K, Touloumi G, Samoli E, et al. Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. Epidemiology. 2001;12:521–31.PubMedCrossRefPubMedCentralGoogle Scholar
  272. 272.
    Pope CA, Turner MC, Burnett RT, et al. Relationships between fine particulate air pollution, cardiometabolic disorders, and cardiovascular mortality. Circ Res. 2015;116:108–15.  https://doi.org/10.1161/CIRCRESAHA.116.305060.CrossRefPubMedPubMedCentralGoogle Scholar
  273. 273.
    Hartiala J, Breton CV, Tang WHW, et al. Ambient air pollution is associated with the severity of coronary atherosclerosis and incident myocardial infarction in patients undergoing elective cardiac evaluation. J Am Heart Assoc. 2016;5:e003947.  https://doi.org/10.1161/JAHA.116.003947.CrossRefPubMedPubMedCentralGoogle Scholar
  274. 274.
    Cesaroni G, Forastiere F, Stafoggia M, et al. Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE project. BMJ. 2014;348:f7412.  https://doi.org/10.1136/bmj.f7412.CrossRefPubMedPubMedCentralGoogle Scholar
  275. 275.
    Miller KA, Siscovick DS, Sheppard L, et al. Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med. 2007;356:447–58.  https://doi.org/10.1056/NEJMoa054409.CrossRefPubMedPubMedCentralGoogle Scholar
  276. 276.
    Newby DE, Mannucci PM, Tell GS, et al. Expert position paper on air pollution and cardiovascular disease. Eur Heart J. 2015;36:83–93.  https://doi.org/10.1093/eurheartj/ehu458.CrossRefPubMedPubMedCentralGoogle Scholar
  277. 277.
    Adar SD, Sheppard L, Vedal S, et al. Fine particulate air pollution and the progression of carotid intima-medial thickness: a prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med. 2013;10:e1001430.  https://doi.org/10.1371/journal.pmed.1001430.CrossRefPubMedPubMedCentralGoogle Scholar
  278. 278.
    Akintoye E, Shi L, Obaitan I, et al. Association between fine particulate matter exposure and subclinical atherosclerosis: a meta-analysis. Eur J Prev Cardiol. 2016;23:602–12.  https://doi.org/10.1177/2047487315588758.CrossRefPubMedPubMedCentralGoogle Scholar
  279. 279.
    Provost EB, Madhloum N, Int Panis L, et al. Carotid intima-media thickness, a marker of subclinical atherosclerosis, and particulate air pollution exposure: the meta-analytical evidence. PLoS One. 2015;10:e0127014.  https://doi.org/10.1371/journal.pone.0127014.CrossRefPubMedPubMedCentralGoogle Scholar
  280. 280.
    Dorans KS, Wilker EH, Li W, et al. Residential proximity to major roads, exposure to fine particulate matter, and coronary artery calcium: the Framingham Heart Study. Arterioscler Thromb Vasc Biol. 2016;36:1679–85.  https://doi.org/10.1161/ATVBAHA.116.307141.CrossRefPubMedPubMedCentralGoogle Scholar
  281. 281.
    Hoffmann B, Moebus S, Dragano N, et al. Residential traffic exposure and coronary heart disease: results from the Heinz Nixdorf Recall Study. Biomarkers. 2009;14:74–8.  https://doi.org/10.1080/13547500902965096.CrossRefPubMedPubMedCentralGoogle Scholar
  282. 282.
    Bauer M, Moebus S, Mhlenkamp S, et al. Urban particulate matter air pollution is associated with subclinical atherosclerosis: results from the HNR (Heinz Nixdorf Recall) study. J Am Coll Cardiol. 2010;56:1803–8.  https://doi.org/10.1016/j.jacc.2010.04.065.CrossRefPubMedPubMedCentralGoogle Scholar
  283. 283.
    Diez Roux AV, Auchincloss AH, Franklin TG, et al. Long-term exposure to ambient particulate matter and prevalence of subclinical atherosclerosis in the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol. 2008;167:667–75.  https://doi.org/10.1093/aje/kwm359.CrossRefPubMedPubMedCentralGoogle Scholar
  284. 284.
    Hoffmann B, Moebus S, Mohlenkamp S, et al. Residential exposure to traffic is associated with coronary atherosclerosis. Circulation. 2007;116:489–96.  https://doi.org/10.1161/CIRCULATIONAHA.107.693622.CrossRefPubMedPubMedCentralGoogle Scholar
  285. 285.
    Kalsch H, Hennig F, Moebus S, et al. Are air pollution and traffic noise independently associated with atherosclerosis: the Heinz Nixdorf Recall Study. Eur Heart J. 2014;35:853–60.  https://doi.org/10.1093/eurheartj/eht426.CrossRefPubMedPubMedCentralGoogle Scholar
  286. 286.
    Künzli N, Jerrett M, Mack WJ, et al. Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect. 2005;113:201–6.PubMedCrossRefPubMedCentralGoogle Scholar
  287. 287.
    Künzli N, Jerrett M, Garcia-Esteban R, et al. Ambient air pollution and the progression of atherosclerosis in adults. PLoS One. 2010;5:e9096.  https://doi.org/10.1371/journal.pone.0009096.CrossRefPubMedPubMedCentralGoogle Scholar
  288. 288.
    Rivera M, Basagaña X, Aguilera I, et al. Association between long-term exposure to traffic-related air pollution and subclinical atherosclerosis: the REGICOR study. Environ Health Perspect. 2013;121:223–30.  https://doi.org/10.1289/ehp.1205146.CrossRefPubMedPubMedCentralGoogle Scholar
  289. 289.
    Wilker EH, Mittleman MA, Coull BA, et al. Long-term exposure to black carbon and carotid intima-media thickness: the normative aging study. Environ Health Perspect. 2013;121:1061–7.  https://doi.org/10.1289/ehp.1104845.CrossRefPubMedPubMedCentralGoogle Scholar
  290. 290.
    Mustafic H, Jabre P, Caussin C, et al. Main air pollutants and myocardial infarction: a systematic review and meta-analysis. JAMA. 2012;307:713–21.  https://doi.org/10.1001/jama.2012.126.CrossRefPubMedPubMedCentralGoogle Scholar
  291. 291.
    Nawrot TS, Perez L, Künzli N, et al. Public health importance of triggers of myocardial infarction: a comparative risk assessment. Lancet (London, England). 2011;377:732–40.  https://doi.org/10.1016/S0140-6736(10)62296-9.CrossRefGoogle Scholar
  292. 292.
    Clancy L, Goodman P, Sinclair H, Dockery DW. Effect of air-pollution control on death rates in Dublin, Ireland: an intervention study. Lancet. 2002;360:1210–4.  https://doi.org/10.1016/S0140-6736(02)11281-5.CrossRefPubMedPubMedCentralGoogle Scholar
  293. 293.
    Bara C, Böthig D, Haverich A. Umweltmedizin: Feinstaubfolgen für das transplantierte Herz. Dtsch Arztebl. 2017;114:33.  https://doi.org/10.3238/PersKardio.2017.03.31.07.CrossRefGoogle Scholar
  294. 294.
    Li H, Chen R, Meng X, et al. Short-term exposure to ambient air pollution and coronary heart disease mortality in 8 Chinese cities. Int J Cardiol. 2015;197:265–70.  https://doi.org/10.1016/j.ijcard.2015.06.050.CrossRefPubMedPubMedCentralGoogle Scholar
  295. 295.
    Wolf K, Schneider A, Breitner S, et al. Associations between short-term exposure to particulate matter and ultrafine particles and myocardial infarction in Augsburg, Germany. Int J Hyg Environ Health. 2015;218:535–42.  https://doi.org/10.1016/j.ijheh.2015.05.002.CrossRefPubMedPubMedCentralGoogle Scholar
  296. 296.
    Powell H, Krall JR, Wang Y, et al. Ambient coarse particulate matter and hospital admissions in the medicare cohort air pollution study, 1999–2010. Environ Health Perspect. 2015;123:1152–8.  https://doi.org/10.1289/ehp.1408720.CrossRefPubMedGoogle Scholar
  297. 297.
    Faustini A, Alessandrini ER, Pey J, et al. Short-term effects of particulate matter on mortality during forest fires in Southern Europe: results of the MED-PARTICLES Project. Occup Environ Med. 2015;72:323–9.  https://doi.org/10.1136/oemed-2014-102459.CrossRefPubMedGoogle Scholar
  298. 298.
    Chang C-C, Chen P-S, Yang C-Y. Short-term effects of fine particulate air pollution on hospital admissions for cardiovascular diseases: a case-crossover study in a tropical city. J Toxicol Environ Heal Part A. 2015;78:267–77.  https://doi.org/10.1080/15287394.2014.960044.CrossRefGoogle Scholar
  299. 299.
    Talbott EO, Rager JR, Benson S, et al. A case-crossover analysis of the impact of PM2.5 on cardiovascular disease hospitalizations for selected CDC tracking states. Environ Res. 2014;134:455–65.  https://doi.org/10.1016/j.envres.2014.06.018.CrossRefPubMedGoogle Scholar
  300. 300.
    Pope CA, Muhlestein JB, May HT, et al. Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution. Circulation. 2006;114:2443–8.  https://doi.org/10.1161/CIRCULATIONAHA.106.636977.CrossRefPubMedGoogle Scholar
  301. 301.
    Peters A, Dockery DW, Muller JE, Mittleman MA. Increased particulate air pollution and the triggering of myocardial infarction. Circulation. 2001;103:2810–5.PubMedCrossRefGoogle Scholar
  302. 302.
    D’Ippoliti D, Forastiere F, Ancona C, et al. Air pollution and myocardial infarction in Rome. Epidemiology. 2003;14:528–35.  https://doi.org/10.1097/01.ede.0000082046.22919.72.CrossRefPubMedGoogle Scholar
  303. 303.
    Zanobetti A, Schwartz J. The effect of particulate air pollution on emergency admissions for myocardial infarction: a multicity case-crossover analysis. Environ Health Perspect. 2005;113:978–82.PubMedCrossRefGoogle Scholar
  304. 304.
    von Klot S, Peters A, Aalto P, et al. Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in five European cities. Circulation. 2005;112:3073–9.  https://doi.org/10.1161/CIRCULATIONAHA.105.548743.CrossRefGoogle Scholar
  305. 305.
    Vidale S, Arnaboldi M, Bosio V, et al. Short-term air pollution exposure and cardiovascular events: a 10-year study in the urban area of Como, Italy. Int J Cardiol. 2017;248:389–93.  https://doi.org/10.1016/j.ijcard.2017.06.037.CrossRefPubMedGoogle Scholar
  306. 306.
    Hart JE, Chiuve SE, Laden F, Albert CM. Roadway proximity and risk of sudden cardiac death in women. Circulation. 2014;130:1474–82.  https://doi.org/10.1161/CIRCULATIONAHA.114.011489.CrossRefPubMedGoogle Scholar
  307. 307.
    Kan H, London SJ, Chen G, et al. Season, sex, age, and education as modifiers of the effects of outdoor air pollution on daily mortality in Shanghai, China: the Public Health and Air Pollution in Asia (PAPA) study. Environ Health Perspect. 2008;116:1183–8.  https://doi.org/10.1289/ehp.10851.CrossRefPubMedGoogle Scholar
  308. 308.
    Hoffmann B, Weinmayr G, Hennig F, et al. Air quality, stroke, and coronary events: results of the Heinz Nixdorf Recall Study from the Ruhr Region. Dtsch Arztebl Int. 2015;112:195–201.  https://doi.org/10.3238/arztebl.2015.0195.CrossRefPubMedGoogle Scholar
  309. 309.
    Rosenbloom JI, Wilker EH, Mukamal KJ, et al. Residential proximity to major roadway and ten-year all-cause mortality after myocardial infarction. Circulation. 2012;125:2197–203.  https://doi.org/10.1161/CIRCULATIONAHA.111.085811.CrossRefPubMedGoogle Scholar
  310. 310.
    Miller MR, McLean SG, Duffin R, et al. Diesel exhaust particulate increases the size and complexity of lesions in atherosclerotic mice. Part Fibre Toxicol. 2013;10:61.  https://doi.org/10.1186/1743-8977-10-61.CrossRefPubMedGoogle Scholar
  311. 311.
    Bai N, Kido T, Suzuki H, et al. Changes in atherosclerotic plaques induced by inhalation of diesel exhaust. Atherosclerosis. 2011;216:299–306.  https://doi.org/10.1016/j.atherosclerosis.2011.02.019.CrossRefPubMedGoogle Scholar
  312. 312.
    Suwa T, Hogg JC, Quinlan KB, et al. Particulate air pollution induces progression of atherosclerosis. J Am Coll Cardiol. 2002;39:935–42.PubMedCrossRefGoogle Scholar
  313. 313.
    Quan C, Sun Q, Lippmann M, Chen L-C. Comparative effects of inhaled diesel exhaust and ambient fine particles on inflammation, atherosclerosis, and vascular dysfunction. Inhal Toxicol. 2010;22:738–53.  https://doi.org/10.3109/08958371003728057.CrossRefPubMedPubMedCentralGoogle Scholar
  314. 314.
    Sun Q, Wang A, Jin X, et al. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA. 2005;294:3003–10.  https://doi.org/10.1001/jama.294.23.3003.CrossRefPubMedGoogle Scholar
  315. 315.
    Brook RD, Brook JR, Urch B, et al. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation. 2002;105:1534–6.PubMedPubMedCentralCrossRefGoogle Scholar
  316. 316.
    Peretz A, Sullivan JH, Leotta DF, et al. Diesel exhaust inhalation elicits acute vasoconstriction in vivo. Environ Health Perspect. 2008;116:937–42.  https://doi.org/10.1289/ehp.11027.CrossRefPubMedGoogle Scholar
  317. 317.
    Lundbäck M, Mills NL, Lucking A, et al. Experimental exposure to diesel exhaust increases arterial stiffness in man. Part Fibre Toxicol. 2009;6:7.  https://doi.org/10.1186/1743-8977-6-7.CrossRefPubMedGoogle Scholar
  318. 318.
    Devlin RB, Ghio AJ, Kehrl H, et al. Elderly humans exposed to concentrated air pollution particles have decreased heart rate variability. Eur Respir J Suppl. 2003;40:76s–80s.PubMedCrossRefGoogle Scholar
  319. 319.
    Gong H Jr, Linn WS, Sioutas C, et al. Controlled exposures of healthy and asthmatic volunteers to concentrated ambient fine particles in Los Angeles. Inhal Toxicol. 2003;15:305–25.  https://doi.org/10.1080/08958370304455.CrossRefPubMedGoogle Scholar
  320. 320.
    Gong H, Linn WS, Terrell SL, et al. Altered heart-rate variability in asthmatic and healthy volunteers exposed to concentrated ambient coarse particles. Inhal Toxicol. 2004;16:335–43.  https://doi.org/10.1080/08958370490439470.CrossRefPubMedGoogle Scholar
  321. 321.
    Gong H, Linn WS, Clark KW, et al. Exposures of healthy and asthmatic volunteers to concentrated ambient ultrafine particles in Los Angeles. Inhal Toxicol. 2008;20:533–45.  https://doi.org/10.1080/08958370801911340.CrossRefPubMedGoogle Scholar
  322. 322.
    Brook RD, Shin HH, Bard RL, et al. Exploration of the rapid effects of personal fine particulate matter exposure on arterial hemodynamics and vascular function during the same day. Environ Health Perspect. 2011;119:688–94.PubMedCrossRefGoogle Scholar
  323. 323.
    Urch B, Silverman F, Corey P, et al. Acute blood pressure responses in healthy adults during controlled air pollution exposures. Environ Health Perspect. 2005;113:1052–5.PubMedCrossRefGoogle Scholar
  324. 324.
    Mills NL, Törnqvist H, Gonzalez MC, et al. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N Engl J Med. 2007;357:1075–82.  https://doi.org/10.1056/NEJMoa066314.CrossRefPubMedGoogle Scholar
  325. 325.
    Törnqvist H, Mills NL, Gonzalez M, et al. Persistent endothelial dysfunction in humans after diesel exhaust inhalation. Am J Respir Crit Care Med. 2007;176:395–400.  https://doi.org/10.1164/rccm.200606-872OC.CrossRefPubMedGoogle Scholar
  326. 326.
    Lucking AJ, Lundback M, Mills NL, et al. Diesel exhaust inhalation increases thrombus formation in man. Eur Heart J. 2008;29:3043–51.  https://doi.org/10.1093/eurheartj/ehn464.CrossRefPubMedPubMedCentralGoogle Scholar
  327. 327.
    Li H, Cai J, Chen R, et al. Particulate matter exposure and stress hormone levels: a randomized, double-blind, crossover trial of air purification. Circulation. 2017;136:618–27.  https://doi.org/10.1161/CIRCULATIONAHA.116.026796.CrossRefPubMedGoogle Scholar
  328. 328.
    Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.  https://doi.org/10.1038/nature09922.CrossRefPubMedGoogle Scholar
  329. 329.
    Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163:1585–95.  https://doi.org/10.1016/j.cell.2015.11.055.CrossRefPubMedPubMedCentralGoogle Scholar
  330. 330.
    Tang WHW, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest. 2014;124:4204–11.  https://doi.org/10.1172/JCI72331.CrossRefPubMedPubMedCentralGoogle Scholar
  331. 331.
    Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85.  https://doi.org/10.1038/nm.3145.CrossRefPubMedPubMedCentralGoogle Scholar
  332. 332.
    Tang WHW, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–84.  https://doi.org/10.1056/NEJMoa1109400.CrossRefPubMedPubMedCentralGoogle Scholar
  333. 333.
    Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165:111–24.  https://doi.org/10.1016/j.cell.2016.02.011.CrossRefPubMedPubMedCentralGoogle Scholar
  334. 334.
    Al-Waiz M, Mikov M, Mitchell SC, Smith RL. The exogenous origin of trimethylamine in the mouse. Metabolism. 1992;41:135–6.  https://doi.org/10.1016/0026-0495(92)90140-6.CrossRefPubMedPubMedCentralGoogle Scholar
  335. 335.
    Gregory JC, Buffa JA, Org E, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290:5647–60.  https://doi.org/10.1074/jbc.M114.618249.CrossRefPubMedPubMedCentralGoogle Scholar
  336. 336.
    Jaiswal S, Natarajan P, Silver AJ, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017.  https://doi.org/10.1056/NEJMoa1701719.PubMedCrossRefPubMedCentralGoogle Scholar
  337. 337.
    Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.  https://doi.org/10.1056/NEJMoa1408617.CrossRefPubMedPubMedCentralGoogle Scholar
  338. 338.
    Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16.  https://doi.org/10.1182/blood-2015-03-631747.CrossRefPubMedPubMedCentralGoogle Scholar
  339. 339.
    Acuna-Hidalgo R, Sengul H, Steehouwer M, et al. Ultra-sensitive sequencing identifies high prevalence of clonal hematopoiesis-associated mutations throughout adult life. Am J Hum Genet. 2017;101:50–64.  https://doi.org/10.1016/j.ajhg.2017.05.013.CrossRefPubMedPubMedCentralGoogle Scholar
  340. 340.
    Fuster JJ, MacLauchlan S, Zuriaga MA, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 2017;355:842–847.  https://doi.org/10.1126/science.aag1381.PubMedCrossRefPubMedCentralGoogle Scholar
  341. 341.
    Virchow R. Cellular pathology; 1860.Google Scholar
  342. 342.
    Libby P, Okamoto Y, Rocha VZ, Folco E. Inflammation in atherosclerosis. Circ J. 2010;74:213–20.  https://doi.org/10.1253/circj.CJ-09-0706.CrossRefPubMedPubMedCentralGoogle Scholar
  343. 343.
    Munro JM, Cotran RS. The pathogenesis of atherosclerosis: atherogenesis and inflammation. Lab Invest. 1988;58:249–61.PubMedPubMedCentralGoogle Scholar
  344. 344.
    Emerging Risk Factors Collaboration, Kaptoge S, Di Angelantonio E, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet (London, England). 2010;375:132–40.  https://doi.org/10.1016/S0140-6736(09)61717-7.CrossRefGoogle Scholar
  345. 345.
    Emerging Risk Factors Collaboration, Kaptoge S, Di Angelantonio E, et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367:1310–20.  https://doi.org/10.1056/NEJMoa1107477.CrossRefGoogle Scholar
  346. 346.
    Wennberg P, Wensley F, Di Angelantonio E, et al. Haemostatic and inflammatory markers are independently associated with myocardial infarction in men and women. Thromb Res. 2012;129:68–73.  https://doi.org/10.1016/j.thromres.2011.05.015.CrossRefPubMedPubMedCentralGoogle Scholar
  347. 347.
    Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836–43.  https://doi.org/10.1056/NEJM200003233421202.CrossRefPubMedPubMedCentralGoogle Scholar
  348. 348.
    Koenig W, Sund M, Fröhlich M, et al. C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation. 1999;99:237–42.PubMedCrossRefPubMedCentralGoogle Scholar
  349. 349.
    Kuller LH, Tracy RP, Shaten J, Meilahn EN. Relation of C-reactive protein and coronary heart disease in the MRFIT nested case-control study. Multiple risk factor intervention trial. Am J Epidemiol. 1996;144:537–47.PubMedCrossRefPubMedCentralGoogle Scholar
  350. 350.
    C-Reactive Protein Coronary Heart Disease Genetics Collaboration, Wensley F, Gao P, et al. Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ. 2011;342:d548.  https://doi.org/10.1136/bmj.d548.
  351. 351.
    Sheedy FJ, Grebe A, Rayner KJ, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol. 2013;14:812–20.  https://doi.org/10.1038/ni.2639.CrossRefPubMedPubMedCentralGoogle Scholar
  352. 352.
    Hoseini Z, Sepahvand F, Rashidi B, et al. NLRP3 inflammasome: its regulation and involvement in atherosclerosis. J Cell Physiol. 2017.  https://doi.org/10.1002/jcp.25930.PubMedCrossRefPubMedCentralGoogle Scholar
  353. 353.
    Després JP. Health consequences of visceral obesity. Ann Med. 2001;33:534–41.PubMedCrossRefPubMedCentralGoogle Scholar
  354. 354.
    Savoia C, Schiffrin EL. Inflammation in hypertension. Curr Opin Intern Med. 2006;5:245–51.  https://doi.org/10.1097/01.mnh.0000203189.57513.76.CrossRefGoogle Scholar
  355. 355.
    Altman R. Risk factors in coronary atherosclerosis athero-inflammation: the meeting point. Thromb J. 2003;1:1–11.  https://doi.org/10.1186/1477-9560-1-4.CrossRefGoogle Scholar
  356. 356.
    Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11:98–107.  https://doi.org/10.1038/nri2925.CrossRefPubMedPubMedCentralGoogle Scholar
  357. 357.
    Silverstein DM. Inflammation in chronic kidney disease: role in the progression of renal and cardiovascular disease. Pediatr Nephrol. 2009;24:1445–52.  https://doi.org/10.1007/s00467-008-1046-0.CrossRefPubMedPubMedCentralGoogle Scholar
  358. 358.
    Lee J, Taneja V, Vassallo R. Cigarette smoking and inflammation: cellular and molecular mechanisms. J Dent Res. 2012;91:142–9.  https://doi.org/10.1177/0022034511421200.CrossRefPubMedPubMedCentralGoogle Scholar
  359. 359.
    Bohula EA, Giugliano RP, Cannon CP, et al. Achievement of dual low-density lipoprotein cholesterol and high-sensitivity c-reactive protein targets more frequent with the addition of ezetimibe to simvastatin and associated with better outcomes in IMPROVE-IT. Circulation. 2015;132:1224–33.  https://doi.org/10.1161/CIRCULATIONAHA.115.018381.CrossRefPubMedPubMedCentralGoogle Scholar
  360. 360.
    Scirica BM, Cannon CP, Sabatine MS, et al. Concentrations of C-reactive protein and B-type natriuretic peptide 30 days after acute coronary syndromes independently predict hospitalization for heart failure and cardiovascular death. Clin Chem. 2009;55:265–73.  https://doi.org/10.1373/clinchem.2008.117192.CrossRefPubMedPubMedCentralGoogle Scholar
  361. 361.
    Ridker PM, Danielson E, Fonseca FAH, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.  https://doi.org/10.1056/NEJMoa0807646.CrossRefPubMedPubMedCentralGoogle Scholar
  362. 362.
    Shishehbor MH, Hazen SL. JUPITER to earth: a statin helps people with normal LDL-C and high hs-CRP, but what does it mean? Cleve Clin J Med. 2009;76:37–44.  https://doi.org/10.3949/ccjm.75a.08105.CrossRefPubMedPubMedCentralGoogle Scholar
  363. 363.
    Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011;162:597–605.  https://doi.org/10.1016/j.ahj.2011.06.012.CrossRefPubMedPubMedCentralGoogle Scholar
  364. 364.
    Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.  https://doi.org/10.1056/NEJMoa1707914.CrossRefPubMedPubMedCentralGoogle Scholar
  365. 365.
    Hansson GK. Inflammation and atherosclerosis-The end of a controversy. Circulation. 2017.  https://doi.org/10.1161/CIRCULATIONAHA.117.030484.PubMedCrossRefPubMedCentralGoogle Scholar
  366. 366.
    Baylis RA, Gomez D, Mallat Z, et al. The CANTOS trial one important step for clinical cardiology but a giant leap for vascular biology. Arterioscler Thromb Vasc Biol. 2017;37:e174–7.  https://doi.org/10.1161/ATVBAHA.117.310097.CrossRefPubMedPubMedCentralGoogle Scholar
  367. 367.
    Baber U, Mehran R, Sartori S, et al. Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the bioimage study. J Am Coll Cardiol. 2015;65:1065–74.  https://doi.org/10.1016/j.jacc.2015.01.017.CrossRefPubMedPubMedCentralGoogle Scholar
  368. 368.
    Wilkins JT, Ning H, Berry J, et al. Lifetime risk and years lived free of total cardiovascular disease. JAMA. 2012;308:1795.  https://doi.org/10.1001/jama.2012.14312.CrossRefPubMedPubMedCentralGoogle Scholar
  369. 369.
    Rothman KJ, Greenland S. Causation and causal inference in epidemiology. Am J Public Health. 2005;95:S144–50.  https://doi.org/10.2105/AJPH.2004.059204.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hannover Medical SchoolHannoverGermany
  2. 2.Hannover Medical SchoolHannoverGermany

Personalised recommendations