Skip to main content

Maximum Stacking Base Pairs: Hardness and Approximation by Nonlinear LP-Rounding

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11490))

Included in the following conference series:

  • 740 Accesses

Abstract

Maximum stacking base pairs is a fundamental combinatorial problem from RNA secondary structure prediction under the energy model. The basic maximum stacking base pairs problem can be described as: given an RNA sequence, find a maximum number of base pairs such that each chosen base pair has at least one parallel and adjacent partner (i.e., they form a stacking). This problem is NP-hard, no matter whether the candidate base pairs follow the biology principle or are given explicitly as input. This paper investigates a restricted version of this problem where the base pairs are given as input and each base is associated with at most k (a constant) base pairs. We show that this restricted version is still APX-hard, even if the base pairs are weighted. Moreover, by a nonlinear LP-rounding method, we present an approximation algorithm with a factor \(\frac{32(k-1)^{3}e^{3}}{8(k-1)e-1}\). Applying our algorithms on the simulated data, the actual approximation factor is in fact much better than this theoretical bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tinoco Jr., I., Bustamante, C.: How RNA folds. J. Mol. Biol. 293, 271–281 (1999)

    Article  Google Scholar 

  2. Nussinov, R., Pieczenik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop matchings. SIAM J. Appl. Math. 35(1), 68–82 (1978)

    Article  MathSciNet  Google Scholar 

  3. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc. Natl. Acad. Sci. USA 77, 6309–6313 (1980)

    Article  Google Scholar 

  4. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)

    Article  Google Scholar 

  5. Zuker, M., Sankoff, D.: RNA secondary structures and their prediction. Bull. Math. Biol. 46, 591–621 (1984)

    Article  Google Scholar 

  6. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl. Math. 45, 810–825 (1985)

    Article  MathSciNet  Google Scholar 

  7. Lyngsø, R.B., Zuker, M., Pedersen, C.N.S.: Fast evaluation of interval loops in RNA secondary structure prediction. Bioinformatics 15, 440–445 (1999)

    Article  Google Scholar 

  8. Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy based models. J. Comput. Biol. 7(3/4), 409–427 (2000)

    Article  Google Scholar 

  9. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Appl. Math. 104(1–3), 45–62 (2000)

    Article  MathSciNet  Google Scholar 

  10. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285(5), 2053–2068 (1999)

    Article  Google Scholar 

  11. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars for RNA structure prediction. Theor. Comput. Sci. 210(2), 277–303 (1999)

    Article  MathSciNet  Google Scholar 

  12. Tinoco Jr., I., et al.: Improved estimation of secondary structure in ribonucleic acids. Nat. New Biol. 246, 40–42 (1973)

    Article  Google Scholar 

  13. Ieong, S., Kao, M.-Y., Lam, T.-W., Sung, W.-K., Yiu, S.-M.: Predicting RNA secondary structure with arbitrary pseudoknots by maximizing the number of stacking pairs. J. Comput. Biol. 10, 981–995 (2003)

    Article  Google Scholar 

  14. Lyngsø, R.B.: Complexity of pseudoknot prediction in simple models. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 919–931. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-8_77

    Chapter  Google Scholar 

  15. Jiang, M.: Approximation algorithms for predicting RNA secondary structures with arbitrary pseudoknots. IEEE/ACM Trans. Comput. Biol. Bioinform. 7(2), 323–332 (2010)

    Article  Google Scholar 

  16. Berman, P.: A \(d\)/2 approximation for maximum weight independent set in \(d\)-Claw free graphs. Nordic J. Comput. 7, 178–184 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Zhou, A., Jiang, H., Guo, J., Zhu, D.: A new approximation algorithm for the maximum stacking base pairs problem from RNA secondary structures prediction. In: Gao, X., Du, H., Han, M. (eds.) COCOA 2017. LNCS, vol. 10627, pp. 85–92. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71150-8_7

    Chapter  Google Scholar 

  18. Berman, P., Karpinski, M.: On some tighter inapproximability results (extended abstract). In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_17

    Chapter  Google Scholar 

Download references

Acknowledgments

This research is supported by NSF of China under grant 61872427, 61732009 and 61628207, by NSF of Shandong Provence under grant ZR201702190130. Haitao Jiang is also supported by Young Scholars Program of Shandong University. Peiqiang Liu is also supported by Key Research and Development Program of Yantai City (2017ZH065) and CERNET Innovation Project (No. NGII20161204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L., Jiang, H., Liu, P., Zhu, B., Zhu, D. (2019). Maximum Stacking Base Pairs: Hardness and Approximation by Nonlinear LP-Rounding. In: Cai, Z., Skums, P., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2019. Lecture Notes in Computer Science(), vol 11490. Springer, Cham. https://doi.org/10.1007/978-3-030-20242-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20242-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20241-5

  • Online ISBN: 978-3-030-20242-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics