Skip to main content

Graph Transformations, Semigroups, and Isotopic Labeling

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11490))

Included in the following conference series:

Abstract

The Double Pushout (DPO) approach for graph transformation naturally allows an abstraction level of biochemical systems in which individual atoms of molecules can be traced automatically within chemical reaction networks. Aiming at a mathematical rigorous approach for isotopic labeling design we convert chemical reaction networks (represented as directed hypergraphs) into transformation semigroups. Symmetries within chemical compounds correspond to permutations whereas (not necessarily invertible) chemical reactions define the transformations of the semigroup. An approach for the automatic inference of informative labeling of atoms is presented, which allows to distinguish the activity of different pathway alternatives within reaction networks. To illustrate our approaches, we apply them to the reaction network of glycolysis, which is an important and well understood process that allows for different alternatives to convert glucose into pyruvate.

Supported in part by the Independent Research Fund Denmark, Natural Sciences, grant DFF-7014-00041.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note: The linearisation ids are 1-indexed since they will be used in a semigroup where the tradition is to use the range 1 to n.

References

  1. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: Inferring chemical reaction patterns using graph grammar rule composition. J. Syst. Chem. 4(1), 4 (2013)

    Article  Google Scholar 

  2. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: 50 shades of rule composition. In: Fages, F., Piazza, C. (eds.) FMMB 2014. LNCS, vol. 8738, pp. 117–135. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10398-3_9

    Chapter  Google Scholar 

  3. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: A software package for chemically inspired graph transformation. In: Echahed, R., Minas, M. (eds.) ICGT 2016. LNCS, vol. 9761, pp. 73–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40530-8_5

    Chapter  MATH  Google Scholar 

  4. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: Chemical transformation motifs – modelling pathways as integer hyperflows. IEEE/ACM Trans. Comput. Biol. Bioinform. (2018)

    Google Scholar 

  5. Andersen, J.L., Merkle, D.: A generic framework for engineering graph canonization algorithms. In: 2018 Proceedings of the 20th Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 139–153 (2018). https://doi.org/10.1137/1.9781611975055.13

    Chapter  Google Scholar 

  6. Brim, L., Češka, M., Šafránek, D.: Model checking of biological systems. In: Bernardo, M., de Vink, E., Di Pierro, A., Wiklicky, H. (eds.) SFM 2013. LNCS, vol. 7938, pp. 63–112. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38874-3_3

    Chapter  MATH  Google Scholar 

  7. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation - part i: basic concepts and double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, chap. 3, pp. 163–245. World Scientific (1997)

    Google Scholar 

  8. East, J., Egri-Nagy, A., Mitchell, J.D., Péresse, Y.: Computing finite semigroups. J. Symb. Comput. (2018, in press). Early access online

    Google Scholar 

  9. Egri-Nagy, A., Nehaniv, C.L.: Hierarchical coordinate systems for understanding complexity and its evolution, with applications to genetic regulatory networks. Artif. Life 14(3), 299–312 (2008). https://doi.org/10.1162/artl.2008.14.3.14305

    Article  Google Scholar 

  10. Egri-Nagy, A., Nehaniv, C.L., Rhodes, J.L., Schilstra, M.J.: Automatic analysis of computation in biochemical reactions. BioSystems 94(1–2), 126–134 (2008). https://doi.org/10.1016/j.biosystems.2008.05.018

    Article  Google Scholar 

  11. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer-Verlag, Berlin (2006). https://doi.org/10.1007/3-540-31188-2

    Book  MATH  Google Scholar 

  12. Flamholz, A., Noor, E., Bar-Even, A., Liebermeister, W., Milo, R.: Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl. Acad. Sci. 110(24), 10039–10044 (2013)

    Article  Google Scholar 

  13. Ganyushkin, O., Mazorchuk, V.: Classical Finite Transformation Semigroups, vol. 9. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-84800-281-4

    Book  MATH  Google Scholar 

  14. Ginzburg, A.: Algebraic Theory of Automata. Academic Press, Cambridge (1968)

    MATH  Google Scholar 

  15. Nehaniv, C.L., et al.: Symmetry structure in discrete models of biochemical systems: natural subsystems and the weak control hierarchy in a new model of computation driven by interactions. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 373(2046) (2015). https://doi.org/10.1098/rsta.2014.0223

    Article  MathSciNet  Google Scholar 

  16. Orth, J.D., Thiele, I., Palsson, B.Ø.: What is flux balance analysis? Nat. Biotech. 28, 245–248 (2010)

    Article  Google Scholar 

  17. Rhodes, J., Nehaniv, C.L., Hirsch, M.W.: Applications of Automata Theory and Algebra. World Scientific, September 2009. https://doi.org/10.1142/7107

    Book  Google Scholar 

  18. Sanders, P.: Algorithm engineering – an attempt at a definition. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 321–340. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03456-5_22

    Chapter  Google Scholar 

  19. Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 2(02), 165–182 (1994)

    Article  Google Scholar 

  20. Zeigarnik, A.V.: On hypercycles and hypercircuits in hypergraphs. Discrete Math. Chem. 51, 377–383 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Merkle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andersen, J.L., Merkle, D., Rasmussen, P.S. (2019). Graph Transformations, Semigroups, and Isotopic Labeling. In: Cai, Z., Skums, P., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2019. Lecture Notes in Computer Science(), vol 11490. Springer, Cham. https://doi.org/10.1007/978-3-030-20242-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20242-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20241-5

  • Online ISBN: 978-3-030-20242-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics