Skip to main content

A Robustness Analysis of Dynamic Boolean Models of Cellular Circuits

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11490))

Included in the following conference series:

  • 704 Accesses

Abstract

With ever growing amounts of omics data, the next challenge in biological research is the interpretation of these data to gain mechanistic insights about cellular function. Dynamic models of cellular circuits that capture the activity levels of proteins and other molecules over time offer great expressive power by allowing the simulation of the effects of specific internal or external perturbations on the workings of the cell. However, the study of such models is at its infancy and no large scale analysis of the robustness of real models to changing conditions has been conducted to date. Here we provide a computational framework to study the robustness of such models using a combination of stochastic simulations and integer linear programming techniques. We apply our framework to a large collection of cellular circuits and benchmark the results against randomized models. We find that the steady states of real circuits tend to be more robust in multiple aspects compared to their randomized counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The source code used for the analysis can be found at github.com/arielbro/attractor_learning, commit hash 83474950c9fc3aa61277d5535a142aad90ff7eed.

References

  1. Chatr-Aryamontri, A., et al.: The BioGRID interaction database: 2015 update. Nucleic Acids Res. 43(Database issue), D470–D478 (2015)

    Article  Google Scholar 

  2. Silberberg, Y., Kupiec, M., Sharan, R.: A method for predicting protein-protein interaction types. PLoS ONE 9, e90904 (2014)

    Article  Google Scholar 

  3. Ideker, T., et al.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(1), s233–s240 (2002)

    Article  Google Scholar 

  4. Vandin, F., Upfal, E., Raphael, B.: Algorithms for detecting significantly mutated pathways in cancer. J. Comput. Biol. 18(3), 507–522 (2011)

    Article  MathSciNet  Google Scholar 

  5. Cowen, L., et al.: Network propagation: a universal amplifier of genetic associations. Nat. Rev. Genet. 18(9), 551–562 (2017)

    Article  Google Scholar 

  6. Shachar, R., et al.: A systems-level approach to mapping the telomere length maintenance gene circuitry. Mol. Syst. Biol. 4, 172 (2008)

    Article  Google Scholar 

  7. Yeger-Lotem, E., et al.: Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nat. Genet. 41(3), 316–323 (2009)

    Article  Google Scholar 

  8. Huang, S., Fraenkel, E.: Integrating proteomic and transcriptional and and interactome data reveals hidden components of signaling and regulatory networks. Sci. Sig. 2(81), ra40 (2009)

    Google Scholar 

  9. Yosef, N., et al.: Toward accurate reconstruction of functional protein networks. Mol. Syst. Biol. 5, 248 (2009)

    Article  Google Scholar 

  10. Dittrich, M., et al.: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24(13), i223–i231 (2008)

    Article  Google Scholar 

  11. Said, M., et al.: Global network analysis of phenotypic effects: protein networks and toxicity modulation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101(52), 18006–18011 (2004)

    Article  Google Scholar 

  12. Jonsson, P., Bates, P.: Global topological features of cancer proteins in the human interactome. Bioinformatics 22(18), 2291–2297 (2006)

    Article  Google Scholar 

  13. Novere, N.L.: Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet. 16(3), 146–158 (2015)

    Article  Google Scholar 

  14. Morris, M., et al.: Logic-based models for the analysis of cell signaling networks. Biochemistry 49(15), 3216–3224 (2010)

    Article  Google Scholar 

  15. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  16. Samaga, R., et al.: The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput. Biol. 5(8), e1000438 (2009)

    Article  Google Scholar 

  17. Oda, K., et al.: A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol. 1, 2005.0010 (2005)

    Article  Google Scholar 

  18. Grieco, L., et al.: Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput. Biol. 9(10), e1003286 (2013)

    Article  Google Scholar 

  19. Saez-Rodriguez, J., et al.: Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol. 5, 331 (2009)

    Article  Google Scholar 

  20. Mitsos, A., et al.: Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data. PLoS Comput. Biol. 5(12), e1000591 (2009)

    Article  Google Scholar 

  21. Moignard, V., et al.: Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33(3), 269–276 (2015)

    Article  Google Scholar 

  22. Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory networks with GINsim. Methods Mol. Biol. 804, 463–479 (2012)

    Article  Google Scholar 

  23. Qiu, Y., et al.: On control of singleton attractors in multiple Boolean networks: integer programming-based method. BMC Syst. Biol. 8(Suppl. 1), S7 (2014)

    Article  Google Scholar 

  24. Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1393–1399 (2011)

    Article  Google Scholar 

  25. Morris, M., et al.: Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput. Biol. 7(3), e1001099 (2011)

    Article  MathSciNet  Google Scholar 

  26. Huard, J., et al.: An integrative model links multiple inputs and signaling pathways to the onset of DNA synthesis in hepatocytes. FEBS J. 279(18), 3290–3313 (2012)

    Article  Google Scholar 

  27. Dasika, M., Burgard, A., Maranas, C.: A computational framework for the topological analysis and targeted disruption of signal transduction networks. Biophys J. 91(1), 382–398 (2006)

    Article  Google Scholar 

  28. Vardi, L., Ruppin, E., Sharan, R.: A linearized constraint-based approach for modeling signaling networks. J. Comput. Biol. 19(2), 232–240 (2012)

    Article  Google Scholar 

  29. Gat-Viks, I., et al.: A probabilistic methodology for integrating knowledge and experiments on biological networks. J. Comput. Biol. 13(2), 165–181 (2006)

    Article  MathSciNet  Google Scholar 

  30. Alon, U., et al.: Robustness in bacterial chemotaxis. Nature 387, 913–917 (1997)

    Article  Google Scholar 

  31. Li, F., et al.: The yeast cellcycle network is robustly designed. Proc. Natl. Acad. Sci. USA 101, 4781–4786 (2004)

    Article  Google Scholar 

  32. Aldana, M., Cluzel, P.: A natural class of robust networks. Proc. Natl. Acad. Sci. USA 100, 8710–8714 (2003)

    Article  Google Scholar 

  33. Fretter, C., Szejka, A., Drossel, B.: Perturbation propagation in random and evolved Boolean networks. New J. Phys. 11, 033005:1–033005:13 (2009)

    Article  Google Scholar 

  34. Sevim, V., Rikvold, P.: Chaotic gene regulatory networks can be robust against mutations and noise. J. Theor. Biol. 253, 323–332 (2008)

    Article  MathSciNet  Google Scholar 

  35. Peixoto, T.: Redundancy and error resilience in Boolean networks. Phys. Rev. Lett. 104, 048701 (2010)

    Article  Google Scholar 

  36. Klemm, K., Bornholdt, S.: Topology of biological networks and reliability of information processing. Proc. Natl. Acad. Sci. USA 102, 18414–18419 (2005)

    Article  Google Scholar 

  37. Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control 55, 531–534 (2007)

    Article  MathSciNet  Google Scholar 

  38. Daniels, B., et al.: Criticality distinguishes the ensemble of biological regulatory networks. Phys. Rev. Lett. 121, 138102 (2018)

    Article  Google Scholar 

  39. Sharan, R., Karp, R.: Reconstructing Boolean models of signaling. J. Comput. Biol. 13(2), 165–181 (2006)

    Article  MathSciNet  Google Scholar 

  40. Ghanbarnejad, F., Klemm, K.: Impact of individual nodes in Boolean network dynamics. EPL 99, 58006 (2012)

    Article  Google Scholar 

  41. Helikar, T., et al.: The cell collective: toward an open and collaborative approach to systems biology. BMC Syst. Biol. 6, 96 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

RS was supported by a research grant from the Israel Science Foundation (no. 715/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roded Sharan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 62 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bruner, A., Sharan, R. (2019). A Robustness Analysis of Dynamic Boolean Models of Cellular Circuits. In: Cai, Z., Skums, P., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2019. Lecture Notes in Computer Science(), vol 11490. Springer, Cham. https://doi.org/10.1007/978-3-030-20242-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20242-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20241-5

  • Online ISBN: 978-3-030-20242-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics