Skip to main content

III-Nitride Tunneling Hot Electron Transfer Amplifier (THETA)

  • Chapter
  • First Online:
Book cover High-Frequency GaN Electronic Devices

Abstract

In this chapter, we investigate vertical transistors based on hot electron transport—tunneling hot electron transfer amplifier (THETA). As compared to lateral transport devices such as HEMTs, electron transport can be defined by heterojunction growth at a scale shorter than 10 nm, and output conductance can be controlled through doping and epitaxial engineering. Furthermore, the power dissipation in a vertical device occurs over a volume rather than in a 2D sheet; the local temperature rise is not as significant as in the lateral case. THETA had been previously demonstrated in GaAs systems, and current gain in excess of 10 had been achieved with wide bandgap AlSbAs emitter at room temperature. GaN THETA has been reported in recent years, but the current gain in these devices has remained relatively low.

We demonstrate GaN THETA operating with common-emitter current gain above 10 for the first time by implementing polarization-engineered barriers in the emitter-base and base-collector junctions. Hot electron spectrometry and ballistic electron reflection in THETA were observed with the evidence of electron energy distribution and room temperature negative differential resistance (NDR). The electron-electron and coupled plasmon-phonon scatterings are key factors for the hot electron energy relaxation and broadening in base, in accordance with Monte Carlo simulation. Shrinking base thickness will reduce scattering rates and thereby increase current gain. Small signal model suggests above 200 GHz ft can be expected with a current density above 500 kA/cm2, base thickness of 5 nm and base doping of 2E20 cm2 for device mesa area less than 5 μm2.

For future work, optimizing of design to suppress output conductance and advanced processing technology to reduce parasitic components will enable highly scaled THETA for high-frequency operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.K. Mishra, L. Shen, T.E. Kazior, Y.-F. Wu, GaN-based RF power devices and amplifiers. Proc. IEEE 96(2), 287–305 (2008)

    Article  Google Scholar 

  2. Y.-F. Wu, D. Kapolnek, J.P. Ibbetson, P. Parikh, B.P. Keller, U.K. Mishra, Very-high power density AlGaN/GaN HEMTs. IEEE Trans Electr Devices 48(3), 586–590 (2001)

    Article  Google Scholar 

  3. J. Kuzmík, Power electronics on InAlN/(In) GaN: Prospect for a record performance. IEEE Electr Device Letters 22(11), 510–512 (2001)

    Article  Google Scholar 

  4. S. Nakamura, T. Mukai, M. Senoh, Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64(13), 1687–1689 (1994)

    Article  Google Scholar 

  5. S. Pimputkar, J.S. Speck, S.P. DenBaars, S. Nakamura, Prospects for LED lighting. Nat. Photonics 3(4), 180 (2009)

    Article  Google Scholar 

  6. G. Martin et al., Valence-band discontinuity between GaN and AlN measured by x-ray photoemission spectroscopy. Appl. Phys. Lett. 65(5), 610–612 (1994)

    Article  Google Scholar 

  7. N. Nepal, J. Li, M.L. Nakarmi, J.Y. Lin, H.X. Jiang, Temperature and compositional dependence of the energy band gap of AlGaN alloys. Appl. Phys. Lett. 87(24), 242104 (2005)

    Article  Google Scholar 

  8. T.P. Chow, R. Tyagi, Wide bandgap compound semiconductors for superior high-voltage unipolar power devices. IEEE Trans Electr Devices 41(8), 1481–1483 (1994)

    Article  Google Scholar 

  9. Y. Yuanzheng et al., InAlN/AlN/GaN HEMTs With Regrown Ohmic Contacts and <formula formulatype="inline"> <img src="/images/tex/20391.gif" alt="f_{T}"> </formula> of 370 GHz. IEEE Electr Device Letters 33(7), 988–990 (2012)

    Article  Google Scholar 

  10. U.K. Mishra, P. Parikh, W. Yi-Feng, AlGaN/GaN HEMTs-an overview of device operation and applications. Proc. IEEE 90(6), 1022–1031 (2002)

    Article  Google Scholar 

  11. T. Yan et al., Ultrahigh-speed GaN high-electron-mobility transistors With <inline-formula> <img src="/images/tex/27762.gif" alt="f_{T}/f_{math\rm {\max }}"> </inline-formula> of 454/444 GHz. IEEE Electr Device Letters 36(6), 549–551 (2015)

    Article  Google Scholar 

  12. J.B. Khurgin, D. Jena, Y.J. Ding, Isotope disorder of phonons in GaN and its beneficial effect on high power field effect transistors. Appl. Phys. Lett. 93(3), 032110-1-032110-3 (2008)

    Article  Google Scholar 

  13. F. Tian, W. Ronghua, X. Huili, S. Rajan, D. Jena, Effect of optical phonon scattering on the performance of GaN transistors. IEEE Electr Device Letters 33(5), 709–711 (2012)

    Article  Google Scholar 

  14. S. Dasgupta, A. Nidhi, J. Raman, S. Speck, U.K. Mishra, Experimental demonstration of III-nitride hot-electron transistor with GaN base. IEEE Electr Device Letters 32(9), 1212–1214 (2011)

    Article  Google Scholar 

  15. G. Gupta et al., Common emitter operation of III-N HETs using AlGaN and InGaN polarization-dipole induced barriers. Device Research Conference (DRC), 2014 72nd Annual (2014), pp. 255–256

    Google Scholar 

  16. Z. Y. Digbijoy N. Nath, Pil Sung Park, and Siddharth Rajan, III-Nitride TUNNEL Injection Hot Electron Transfer Amplifier(THETA) with Common-emitter Gain. International Semiconductor Research Conference (ISDRS) (December, 2013)

    Google Scholar 

  17. Z. C. Yang, D. N. Nath, Y. Zhang, and S. Rajan, N-polar III-nitride tunneling hot electron transfer amplifier. Device Research Conference (DRC), 2014 72nd Annual (2014), pp. 173–174

    Google Scholar 

  18. M.J.W. Rodwell et al., Submicron scaling of HBTs. IEEE Trans Electr Devices 48(11), 2606–2624 (2001)

    Article  Google Scholar 

  19. S.E. Laux, W. Lee, Collector signal delay in the presence of velocity overshoot. IEEE Electr Device Letters 11(4), 174–176 (1990)

    Article  Google Scholar 

  20. T. Ishibashi, Influence of electron velocity overshoot on collector transit times of HBTs. IEEE Trans Electr Devices 37(9), 2103–2105 (1990)

    Article  Google Scholar 

  21. S. Strite, H. Morkoç, GaN, AlN, and InN: A review. J. Vac. Sci. Technol. B 10(4), 1237–1266 (1992)

    Article  Google Scholar 

  22. L. B. R. D.K. Gaskill, K. Doverspike, Electrical transport properties of A1N, GaN and AlGaN, ed. By J. Edgar. Properties of Group III Nitrides, vol. N11, EMIS Datareviews Series (1995), pp. 101–116

    Google Scholar 

  23. D. N. Nath, PhD thesis (The Ohio State University, 2013)

    Google Scholar 

  24. M. Heiblum, M.V. Fischetti, Ballistic hot-electron transistors. IBM J. Res. Dev. 34(4), 530–549 (1990)

    Article  Google Scholar 

  25. M. Lundstrom, Fundamentals of Carrier Transport (Cambridge University Press, New York, 2000)

    Book  Google Scholar 

  26. B.K. Ridley, M. Al-Mudares, The effect of hot phonons and coupled phonon-plasmon modes on scattering-induced NDR in quantum wells. Solid State Electron. 31(3), 683–685 (1988)

    Article  Google Scholar 

  27. E.M. Conwell, M.O. Vassell, High-field transport in n- type GaAs. Phys. Rev. 166(3), 797–821 (1968)

    Article  Google Scholar 

  28. W. Fawcett, A.D. Boardman, S. Swain, Monte Carlo determination of electron transport properties in gallium arsenide. J. Phys. Chem. Solids 31(9), 1963–1990 (1970)

    Article  Google Scholar 

  29. J. Singh, Physics of Semiconductors and Their Heterostructures (McGraw-Hill series in electrical and computer engineering. Electronics and VLSI circuits) (McGraw-Hill, New York, 1993)

    Google Scholar 

  30. D.N. Nath, Z.C. Yang, C.-Y. Lee, P.S. Park, Y.-R. Wu, S. Rajan, Unipolar vertical transport in GaN/AlGaN/GaN heterostructures. Appl. Phys. Lett. 103(2), 022102–022104 (2013)

    Article  Google Scholar 

  31. M. Heiblum, M.I. Nathan, D.C. Thomas, C.M. Knoedler, Direct observation of ballistic transport in GaAs. Phys. Rev. Lett. 55(20), 2200–2203 (1985)

    Article  Google Scholar 

  32. A.F.J. Levi, T.H. Chiu, Room-temperature operation of hot-electron transistors. Appl. Phys. Lett. 51(13), 984–986 (1987)

    Article  Google Scholar 

  33. J.R. Hayes, A.F.J. Levi, W. Wiegmann, Hot-Electron Spectroscopy of GaAs. Phys. Rev. Lett. 54(14), 1570–1572 (1985)

    Article  Google Scholar 

  34. R.F. Kazarinov, S. Luryi, Charge injection over triangular barriers in unipolar semiconductor structures. Appl. Phys. Lett. 38(10), 810–812 (1981)

    Article  Google Scholar 

  35. B.B. Varga, Coupling of Plasmons to Polar Phonons in Degenerate Semiconductors. Phys. Rev. 137(6A), A1896–A1902 (1965)

    Article  Google Scholar 

  36. A. Kastalsky, S. Luryi, Novel real-space hot-electron transfer devices. IEEE Electr Device Letters 4(9), 334–336 (1983)

    Article  Google Scholar 

  37. Z. Pei, A. Verma, J. Verma, X. Huili, P. Fay, and D. Jena, GaN heterostructure barrier diodes (HBD) with polarization-induced delta-doping. Device Research Conference (DRC), 2013 71st Annual (2013), pp. 203–204

    Google Scholar 

  38. Z. Yang, Y. Zhang, D.N. Nath, J.B. Khurgin, S. Rajan, Current gain in sub-10 nm base GaN tunneling hot electron transistors with AlN emitter barrier. Appl. Phys. Lett. 106(3), 032101 (2015)

    Article  Google Scholar 

  39. M. S. William Snodgrass, and M. Feng, 150 nm InP HBT Process with Two-Level Airbridge Interconnects and MIM Capacitors for Sub-Millimeter Wave Research. presented at the CS MANTECH Conference (Tampa, Florida, USA, May 18th-21st, 2009)

    Google Scholar 

  40. J.W. LAI, W. HAFEZ, M. FENG, Vertical scaling of type I InP HBT with FT > 500 GHZ. 14(03), 625–631 (2004)

    Google Scholar 

  41. M.L. Mark Rodwell, B. Brar, InP Bipolar ICs: Scaling Roadmaps, Frequency Limits, Manufacturable Technologies. IEEE Proc 96(2), 271–286 (2008)

    Google Scholar 

  42. M. Urteaga, M. Seo, J. Hacker, Z. Griffith, A. Young, R. Pierson, P. Rowell, A. Skalare, V. Jain, E. Lobisser, M.J.W. Rodwell, InP HBTs for THz Frequency Integrated Circuits, presented at the 23rd International Conference on Indium Phosphide and Related Materials (2011)

    Google Scholar 

  43. M. Urteaga et al., A 130 nm InP HBT Integrated Circuit Technology for THz Electronics, 2016 IEEE International Electron Devices Meeting (IEDM) (2016), pp. 29.2.1–29.2.4

    Google Scholar 

  44. M. Urteaga, Z. Griffith, M. Seo, J. Hacker, M.J.W. Rodwell, InP HBT technologies for THz integrated circuits. Proc. IEEE 105(6), 1051–1067 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharth Rajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Z., Nath, D.N., Zhang, Y., Krishnamoorthy, S., Khurgin, J., Rajan, S. (2020). III-Nitride Tunneling Hot Electron Transfer Amplifier (THETA). In: Fay, P., Jena, D., Maki, P. (eds) High-Frequency GaN Electronic Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-20208-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20208-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20207-1

  • Online ISBN: 978-3-030-20208-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics