Skip to main content

Linearity Aspects of High Power Amplification in GaN Transistors

  • Chapter
  • First Online:
High-Frequency GaN Electronic Devices

Abstract

Linearity (and its absence) is a major design constraint in practical high-frequency communication circuits, impacting both transmitter and receiver circuits. This chapter will introduce the general features of non-linearity and how it impacts circuit design, then dive into the origins of non-linearity in GaN devices specifically, detailing how it is modelled in the literature, and conclude with a discussion of designs at both the device level and circuit level which can help linearize systems based on GaN PAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.H. Lee, The Design of Radio-Frequency Integrated Circuits, 2nd edn. (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  2. A. Katz, Linearization: reducing distortion in power amplifiers. IEEE Microw. Mag. 2(4), 37–49 (2001)

    Article  Google Scholar 

  3. S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, P. Vogl, Nextnano: general purpose 3-D simulations. IEEE Trans. Electron Dev. 54(9), 2137–2142 (2007)

    Article  Google Scholar 

  4. S. Khandelwal, N. Goyal, T.A. Fjeldly, A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices. IEEE Trans. Electron Dev. 58(10), 3622–3625 (2011)

    Article  Google Scholar 

  5. S. Syed, J.B. Heroux, Y.J. Wang, M.J. Manfra, R.J. Molnar, H.L. Stormer, Nonparabolicity of the conduction band of wurtzite GaN. Appl. Phys. Lett. 83(22), 4553–4555 (2003)

    Article  Google Scholar 

  6. B.K. Ridley, P. Tripathi, Polar-optical-phonon and electron-electron scattering in large-bandgap semiconductors. J. Phys. Condens. Matter 10, 6717–6726 (1998)

    Article  Google Scholar 

  7. T. Fang, R. Wang, H. Xing, S. Rajan, D. Jena, Effect of optical phonon scattering on the performance of GaN transistors. IEEE Electron Dev. Lett. 33(5), 709–711 (2012)

    Article  Google Scholar 

  8. S. Bajaj, O.F. Shoron, P.S. Park, S. Krishnamoorthy, F. Akyol, T.H. Hung, S. Reza, E.M. Chumbes, J. Khurgin, S. Rajan, Density-dependent electron transport and precise modeling of GaN high electron mobility transistors. Appl. Phys. Lett. 107(15), 1–5 (2015)

    Article  Google Scholar 

  9. K. Shinohara, D. Regan, A. Corrion, D. Brown, S. Burnham, P.J. Willadsen, I. Alvarado-Rodriguez, M. Cunningham, C. Butler, A. Schmitz, S. Kim, B. Holden, D. Chang, V. Lee, A. Ohoka, P.M. Asbeck, M. Micovic, Deeply-scaled self-aligned-gate GaN DH-HEMTs with ultrahigh cutoff frequency, in Technical Digest - International Electron Devices Meeting, IEDM, vol. 2(D) (2011), pp. 453–456

    Google Scholar 

  10. T. Palacios, S. Rajan, A. Chakraborty, S. Heikman, S. Keller, S.P. DenBaars, U.K. Mishra, Influence of the dynamic access resistance in the gm and fT linearity of AlGaN/GaN HEMTs. IEEE Trans. Electron Dev. 52(10), 2117–2123 (2005)

    Article  Google Scholar 

  11. H. Sarbishaei, D. Yu-Ting Wu, S. Boumaiza, Linearity of GaN HEMT RF power amplifiers - a circuit perspective, in 2012 IEEE/MTT-S International Microwave Symposium Digest (2012), pp. 1–3

    Google Scholar 

  12. S. Xie, V. Paidi, S. Heikman, L. Shen, A. Chini, U.K. Mishra, M.J.W. Rodwell, S.I. Long, High linearity GaN HEMT power amplifier with pre-linearization gate diode. Int. J. High Speed Electron. Syst. 14(3), 847–852 (2004)

    Article  Google Scholar 

  13. R. Pengelly, B. Millon, D. Farrell, B. Pribble, S. Wood, Application of non-linear models in a range of challenging GaN HEMT power amplifier designs, in International Microwave Symposium (2008)

    Google Scholar 

  14. K. Sharma, A. Dasgupta, S. Ghosh, S.A. Ahsan, S. Khandelwal, Y.S. Chauhan, Effect of access region and field plate on capacitance behavior of GaN HEMT, in Proceedings of the 2015 IEEE International Conference on Electron Devices and Solid-State Circuits, EDSSC 2015 (2015), pp. 499–502

    Google Scholar 

  15. S.A. Ahsan, S. Ghosh, K. Sharma, A. Dasgupta, S. Khandelwal, Y.S. Chauhan, Capacitance modeling in dual field-plate power GaN HEMT for accurate switching behavior. IEEE Trans. Electron Dev. 63(2), 565–572 (2016)

    Article  Google Scholar 

  16. T. Chowdhury, Study of Self-Heating Effects in GaN HEMTs. PhD thesis, Arizona State University, 2013

    Google Scholar 

  17. B. Padmanabhan, D. Vasileska, S.M. Goodnick, Current degradation in GaN HEMTs: is self-heating responsible. ECS Trans. 49(1), 103–109 (2012)

    Article  Google Scholar 

  18. K.R. Bagnall, Device-level thermal analysis of GaN-based electronics. Mechanical Engineering, MS(2009), 2009

    Google Scholar 

  19. A. Prejs, S. Wood, R. Pengelly, W. Pribble, Thermal analysis and its application to high power GaN HEMT amplifiers, in 2009 IEEE MTT-S International Microwave Symposium Digest, June (2009), pp. 917–920

    Google Scholar 

  20. K.R. Bagnall, O.I. Saadat, S. Joglekar, T. Palacios, E.N. Wang, Experimental characterization of the thermal time constants of GaN HEMTs via micro-Raman thermometry. IEEE Trans. Electron Dev. 64(5), 2121–2128 (2017)

    Article  Google Scholar 

  21. R. Vetury, N.Q. Zhang, S. Keller, U.K. Misha, The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. Electron Dev. 48(3), 560–566 (2001)

    Article  Google Scholar 

  22. G. Meneghesso, M. Meneghini, D. Bisi, I. Rossetto, A. Cester, U.K. Mishra, E. Zanoni, Trapping phenomena in AlGaN/GaN HEMTs: a study based on pulsed and transient measurements. Semicond. Sci. Technol. 28(7), 074021 (2013)

    Article  Google Scholar 

  23. O. Jardel, F. De Groote, T. Reveyrand, J.C. Jacquet, C. Charbonniaud, J.P. Teyssier, D. Floriot, R. Quéré, An electrothermal model for AlGaN/GaN power HEMTs including trapping effects to improve large-signal simulation results on high VSWR. IEEE Trans. Microw. Theory Tech. 55(12), 2660–2669 (2007)

    Article  Google Scholar 

  24. H. Maehara, T. Gasseling, S. Dudkiewicz, Nonlinear characterization and modeling through pulsed IV/S parameters. Available online: https://www.maurymw.com/pdf/datasheets/CompactModeling.pdf

  25. L. Dunleavy, C. Baylis, W. Curtice, R. Connick, Modeling GaN: powerful but challenging. IEEE Microw. Mag. 11(6), 82–96 (2010)

    Article  Google Scholar 

  26. K. Yuk, G.R. Branner, D. McQuate, An improved empirical large-signal model for high-power GaN HEMTs including self-heating and charge-trapping effects, in IEEE MTT-S International Microwave Symposium Digest (2009), pp. 753–756

    Google Scholar 

  27. C.P. Baylis, Improved techniques for nonlinear electrothermal FET modeling and measurement validation. PhD thesis, University of South Florida, 2007

    Google Scholar 

  28. H. Morkoc, J. Leach, Polarization in GaN based heterostructures and heterojunction field effect transistors (HFETs), in Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications (Springer, New York, 2008), pp. 373–466

    Google Scholar 

  29. J. Zhang, B. Syamal, X. Zhou, S. Arulkumaran, G.I. Ng, A compact model for generic Mis-hemts based on the unified 2DEG density expression. IEEE Trans. Electron Dev. 61(2), 314–323 (2014)

    Article  Google Scholar 

  30. A. Khakifirooz, O.M. Nayfeh, D. Antoniadis, A simple semiempirical short-channel MOSFET current–voltage model continuous across all regions of operation and employing only physical parameters. IEEE Trans. Electron Dev. 56(8), 1674–1680 (2009)

    Article  Google Scholar 

  31. U. Radhakrishna, A compact transport and charge model for GaN-based high electron mobility transistors for RF applications. PhD thesis, Massachusetts Institute of Technology, 2013

    Google Scholar 

  32. Si2 Approves Two IC Design Simulation Standards for Gallium Nitride Market (2018)

    Google Scholar 

  33. W.R. Curtice, M. Ettenberg, A nonlinear {G}a{A}s {FET} model for use in the design of output circuits for power amplifiers. IEEE Trans. Microw. Theory Tech. 33(12), 1383–1394 (1985)

    Article  Google Scholar 

  34. J.M. Golio, M.G. Miller, G.N. Maracas, D.A. Johnson, Frequency-dependent electrical characteristics of GaAs MESFETs. IEEE Trans. Electron Dev. 37(5), 1217–1227 (1990)

    Article  Google Scholar 

  35. I. Angelov, K. Andersson, D. Schreurs, D. Xiao, N. Rorsman, V. Desmaris, M. Sudow, H. Zirath, Large-signal modelling and comparison of AlGaN/GaN HEMTs and SiC MESFETs, in Asia-Pacific Microwave Conference Proceedings, APMC, vol. 1 (2006), pp. 279–282

    Google Scholar 

  36. R. Essaadali, A. Jarndal, A. Kouki, F.M. Ghannouchi, A new GaN HEMT equivalent circuit modeling technique based on X-parameters. IEEE Trans. Microw. Theory Tech. 64(9), 1–20 (2016)

    Article  Google Scholar 

  37. P. Wamback, W. Sansen, Distortion Analysis of Analog Integrated Circuits (Kluwer Academic Publishers, Dordrecht, 1998)

    Book  Google Scholar 

  38. K. Inoue, H. Yamamoto, K. Nakata, F. Yamada, T. Yamamoto, S. Sano, Linearity improvement of GaN HEMT for RF power amplifiers, in Technical Digest - IEEE Compound Semiconductor Integrated Circuit Symposium, CSIC, vol. 2(1) (2013), pp. 6–9

    Google Scholar 

  39. P.S. Park, D.N. Nath, S. Krishnamoorthy, S. Rajan, Electron gas dimensionality engineering in AlGaN/GaN high electron mobility transistors using polarization. Appl. Phys. Lett. 100(6), 1–4 (2012)

    Article  Google Scholar 

  40. S. Joglekar, U. Radhakrishna, D. Piedra, D. Antoniadis, T. Palacios, Large signal linearity enhancement of AlGaN/GaN high electron mobility transistors by device-level VT engineering for transconductance compensation. IEDM Tech. Dig. 3(d), 613–616 (2017)

    Google Scholar 

  41. J.S. Moon, D. Wong, M. Hu, P. Hashimoto, M. Antcliffe, C. McGuire, M Micovic, P. Willadson, 55% PAE and high power Ka-band GaN HEMTs with linearized transconductance via n+ GaN source contact ledge. IEEE Electron Dev. Lett. 29(8), 285–287 (2008)

    Google Scholar 

  42. Y.F. Wu, D. Kapolnek, P. Kozodoy, B. Thibeault, S. Keller, B.P. Keller, S.P. DenBaars, U.K. Mishra, AlGaN/GaN MODFETs with low ohmic contact resistances by source/drain n+re-growth, in Proceedings of the IEEE 24th International Symposium on Compound Semiconductors, ISCS 1997 (1997), pp. 431–434

    Google Scholar 

  43. J. Guo, G. Li, F. Faria, Y. Cao, R. Wang, J. Verma, X. Gao, S. Guo, E. Beam, A. Ketterson, M. Schuette, P. Saunier, M. Wistey, D. Jena, H. Xing, MBE-regrown ohmics in InAlN HEMTs with a regrowth interface resistance of 0.05 Ω mm. IEEE Electron Dev. Lett. 33(4), 525–527 (2012)

    Google Scholar 

  44. K. Shinohara, D.C. Regan, Y. Tang, A.L. Corrion, D.F. Brown, J.C. Wong, J.F. Robinson, H.H. Fung, A. Schmitz, T.C. Oh, S.J. Kim, P.S. Chen, R.G. Nagele, A.D. Margomenos, M. Micovic, Scaling of GaN HEMTs and Schottky diodes for submillimeter-wave MMIC applications. IEEE Trans. Electron Dev. 60(10), 2982–2996 (2013)

    Article  Google Scholar 

  45. K. Zhang, Y. Kong, G. Zhu, J. Zhou, X. Yu, High-linearity AlGaN/GaN FinFETs for microwave power applications. IEEE Electron Dev. Lett. 38(5), 615–618 (2017)

    Article  Google Scholar 

  46. K. Ohi, J.T. Asubar, K. Nishiguchi, T. Hashizume, Current stability in multi-mesa-channel AlGaN/GaN HEMTs. IEEE Trans. Electron Dev. 60(10), 2997–3004 (2013)

    Article  Google Scholar 

  47. K. Shinohara, C. King, A.D. Carter, E.J. Regan, A. Arias, J. Bergman, M. Urteaga, B. Brar, GaN-based field-effect transistors with laterally gated two-dimensional electron gas. IEEE Electron Dev. Lett. 39(3), 417–420 (2018)

    Article  Google Scholar 

  48. R.S. Howell, E.J. Stewart, R. Freitag, J. Parke, B. Nechay, H. Cramer, M. King, S. Gupta, J. Hartman, M. Snook, I. Wathuthanthri, P. Ralston, K. Renaldo, H.G. Henry, R.C. Clarke, The super-lattice castellated field effect transistor (SLCFET): a novel high performance transistor topology ideal for RF switching, in Technical Digest - International Electron Devices Meeting, IEDM, 2015 February, pp. 11.5.1–11.5.4

    Google Scholar 

  49. Y. Ando, A. Wakejima, Y. Okamoto, T. Nakayama, K. Ota, K. Yamanoguchi, Y. Murase, K. Kasahara, K. Matsunaga, T. Inoue, H. Miyamoto, Novel AlGaN/GaN dual-field-plate FET with high gain, increased linearity and stability, in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International (c) (2005), pp. 576–579

    Google Scholar 

  50. B. Gilbert, The multi-tanh principle : a tutorial overview. IEEE J. Solid-State Circ. 33(1), 2–17 (1998)

    Article  Google Scholar 

  51. K. Mekechuk, W. Kim, Linearizing power amplifiers using digital predistortion, EDA tools and test hardware. High Frequency Electronics (April) (2004), pp. 18–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Shinohara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bader, S.J., Shinohara, K., Molnar, A. (2020). Linearity Aspects of High Power Amplification in GaN Transistors. In: Fay, P., Jena, D., Maki, P. (eds) High-Frequency GaN Electronic Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-20208-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20208-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20207-1

  • Online ISBN: 978-3-030-20208-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics