Skip to main content

High Power High Frequency Transistors: A Material’s Perspective

  • Chapter
  • First Online:
High-Frequency GaN Electronic Devices

Abstract

Johnson’s figure of merit (which is proportional to the breakdown field times saturation velocity) is often used to predict the potential power/frequency performance of a material system. Care must be taken when predicting performance based only on Johnson’s figure of merit as many parameters not considered by it can significantly impact performance. This chapter takes a closer look at key material parameters that should be considered when predicting performance solely on material properties. Along with Johnson’s figure of merit, the additional considerations of doping, low field mobility, thermal constraints, and heterojunctions are discussed. The analysis is used to explain why gallium nitride-based high electron mobility transistors have become the material system of choice for high power high frequency applications. The chapter concludes with the requirements for next generation material systems to displace gallium nitride as the preferred semiconductor for high power high frequency applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.J. Baliga, Semiconductors for high-voltage, vertical channel field-effect transistors. J. Appl. Phys. 53(3), 1759–1764 (1982)

    Article  Google Scholar 

  2. B.J. Baliga, Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Device Lett. 10(10), 455–457 (1989)

    Article  Google Scholar 

  3. A. Daicho, T. Saito, S. Kurihara, A. Hiraiwa, H. Kawarada, High-reliability passivation of hydrogen-terminated diamond surface by atomic layer deposition of Al2O3. J. Appl. Phys. 115(22), 223711 (2014)

    Google Scholar 

  4. W.P. Dumke, J.M. Woodall, V.L. Rideout, GaAs-GaAlAs heterojunction transistor for high frequency operation. Solid-State Electron. 15(12), 1339–1343 (1972)

    Article  Google Scholar 

  5. D. Fanning, A. Balistreri, E. Beam III, K. Decker, S. Evans, R. Eye, W. Gaiewski, T. Nagle, P. Saunier, H.-Q. Tserng, High voltage GaAs pHEMT technology for S-band high power amplifiers, in CS MANTECH 2007 Digest (2007)

    Google Scholar 

  6. K. Hirama, H. Takayanagi, S. Yamauchi, J.H. Yang, H. Kawarada, H. Umezawa, Spontaneous polarization model for surface orientation dependence of diamond hole accumulation layer and its transistor performance. Appl. Phys. Lett. 92(11), 112107 (2008)

    Article  Google Scholar 

  7. A.Q. Huang, New unipolar switching power device figures of merit. IEEE Electron Device Lett. 25(5), 298–301 (2004)

    Article  Google Scholar 

  8. B. Hughes, P.J. Tasker, Bias dependence of the MODFET intrinsic model elements values at microwave frequencies. IEEE Trans. Electron Devices 36(10), 2267–2273 (1989)

    Article  Google Scholar 

  9. J.P. Ibbetson, P.T. Fini, K.D. Ness, S.P. DenBaars, J.S. Speck, U.K. Mishra, Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 77(2), 250–252 (2000)

    Article  Google Scholar 

  10. E.O. Johnson, Physical limitations on frequency and power parameters of transistors. RCA Rev. 26, 163–177 (1965)

    Google Scholar 

  11. M. Kasu, T. Oishi, Recent progress of diamond devices for RF applications, in 2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) (IEEE, 2016)

    Google Scholar 

  12. M. Kasu, K. Ueda, H. Ye, Y. Yamauchi, S. Sasaki, T. Makimoto, 2 W/mm output power density at 1 GHz for diamond FETs. Electron. Lett. 41(22), 1249–1250 (2005)

    Article  Google Scholar 

  13. R.W. Keyes, Figure of merit for semiconductors for high-speed switches. Proc. IEEE 60(2), 225–225 (1972)

    Article  Google Scholar 

  14. I.-J. Kim, S. Matsumoto, T. Sakai, T. Yachi, New power device figure of merit for high-frequency applications, in Proceedings of International Symposium on Power Semiconductor Devices and IC’s: ISPSD ’95 (Inst. Electr. Eng. Japan, 1995), pp. 309–314

    Google Scholar 

  15. H. Kroemer, Theory of a wide-gap emitter for transistors. Proc. IRE 45(11), 1535–1537 (1957)

    Article  Google Scholar 

  16. P.H. Ladbrooke, MMIC Design GaAs FETs and HEMTs (Artech House, Boston, 1989)

    Google Scholar 

  17. D.S. Lee, Z. Liu, T. Palacios, GaN high electron mobility transistors for sub-millimeter wave applications. Jpn. J. Appl. Phys. 53(10), 100212 (2014)

    Article  Google Scholar 

  18. W. Liu, Handbook of III–V Heterojunction Bipolar Transistors (Wiley, New York, 1998)

    Google Scholar 

  19. A. Manoi, J.W. Pomeroy, N. Killat, M. Kuball, Benchmarking of thermal boundary resistance in AlGaN/GaN HEMTs on SiC substrates: implications of the nucleation layer microstructure. IEEE Electron Device Lett. 31(12), 1395–1397 (2010)

    Article  Google Scholar 

  20. D.J. Meyer, B.P. Downey, D.S. Katzer, N. Nepal, V.D. Wheeler, M.T. Hardy, T.J. Anderson, D.F. Storm, Epitaxial lift-off and transfer of III-N materials and devices from SiC substrates. IEEE Trans. Semicond. Manuf. 29(4), 384–389 (2016)

    Article  Google Scholar 

  21. T. Mimura, S. Hiyamizu, T. Fujii, K. Nanbu, A new field-effect transistor with selectively doped GaAs/n-AlxGa1−xAs Heterojunctions. Jpn. J. Appl. Phys. 19(5), L225–L227 (1980)

    Article  Google Scholar 

  22. J. Orton, The Story of Semiconductors (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  23. R.A. Pucel, H.A. Haus, H. Statz, Signal and noise properties of Gallium Arsenide microwave field-effect transistors, in Advances in Electronics and Electron Physics (Elsevier, Amsterdam, 1975), pp. 195–265

    Google Scholar 

  24. M. Riordan, L. Hoddeson, Crystal Fire: The Birth of the Information Age (W. W. Norton & Company, London, 1997)

    Google Scholar 

  25. K. Shenai, R.S. Scott, B.J. Baliga, Optimum semiconductors for high-power electronics. IEEE Trans. Electron Devices 36(9), 1811–1823 (1989)

    Article  Google Scholar 

  26. W. Shockley, Circuit elements utilizing semiconductive material. U.S. Patent 2,569,347, 25 Sept 1951

    Google Scholar 

  27. J. Singh, Physics of Semiconductors and Their Heterostructures (McGraw-Hill, New York, 1993)

    Google Scholar 

  28. W.R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1968)

    MATH  Google Scholar 

  29. M. Sotoodeh, A.H. Khalid, A.A. Rezazadeh, Empirical low-field mobility model for III–V compounds applicable in device simulation codes. J. Appl. Phys. 87(6), 2890–2900 (2000)

    Article  Google Scholar 

  30. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  31. P.J. Tasker, B. Hughes, Importance of source and drain resistance to the maximum fT of millimeter-wave MODFETs. IEEE Electron Device Lett. 10(7), 291–293 (1989)

    Article  Google Scholar 

  32. J.L.B. Walker, High-Power GaAs FET Amplifiers (Artech House, Norwood, 1993)

    Google Scholar 

  33. J.L.B. Walker, Extension of the Cripps technique to transistors with feedback, in 32nd European Microwave Conference, 2002 (IEEE, 2002)

    Google Scholar 

  34. H. Wang, F. Wang, J. Zhang, Power semiconductor device figure of merit for high-power-density converter design applications. IEEE Trans. Electron Devices 55(1), 466–470 (2008)

    Article  Google Scholar 

  35. E.W. Weisstein, Dilogarithm. http://mathworld.wolfram.com/dilogarithm.html

  36. E.W. Weisstein, Lerch Transcedent. http://mathworld.wolfram.com/lerchtranscendent.html

  37. Y.-F. Wu, M. Moore, A. Saxler, T. Wisleder, P. Parikh, 40-W/mm Double Field-plated GaN HEMTs, in 2006 64th Device Research Conference (IEEE, 2006).

    Google Scholar 

Download references

Acknowledgements

This work was funded by ONR grant N00014-18-1-2709, monitored by Dr. Paul Maki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Coffie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coffie, R.L. (2020). High Power High Frequency Transistors: A Material’s Perspective. In: Fay, P., Jena, D., Maki, P. (eds) High-Frequency GaN Electronic Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-20208-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20208-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20207-1

  • Online ISBN: 978-3-030-20208-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics