Skip to main content

Non-contact Metrology for mm-Wave and THz Electronics

  • Chapter
  • First Online:

Abstract

We present a novel non-contact probing approach for on-wafer metrology of high-speed devices and integrated circuits. The new method has been developed under the ONR DATE MURI and enables, for the first time, contact-free multi-port S-parameter measurements on-wafer. The main motivation to develop this new method was the inherent issues in the state-of-the-art contact probes, particularly for the millimeter wave and terahertz frequency applications. As the operation frequency increases, the pitch of contact probe tips must be kept small to avoid radiation losses. As such, the probe tips require high precision micro-manufacturing, making them prone to damage during conventional use. Moreover, probe positioning and contact resistance variability hinder measurement repeatability, which is critical for extremely high-frequency applications. The non-contact probing system developed here avoids physical contact with the test wafer by injecting the test signals via a quasi-optical link through an extended hemispherical focusing lens onto the test wafer’s coplanar waveguide environment. Optimized on-wafer butterfly antennas ensure effective radiative coupling onto and out of the test wafer, and the quasi-optical link stays fixed during calibration and measurements. Calibration standards and the test devices on wafer are aligned with the quasi-optical link to conduct the measurements on a vector network analyzer. Furthermore, the control of wafer positioning can be automated using a digital microscope, enabling unprecedented measurement repeatability. We have demonstrated our new approach for 90–750GHz band for single-ended two-port CPW environments. Using modified butterfly baluntennas, our approach also enables, for the first time, pure differential-mode characterization up to 1.1THz. This chapter summarizes the proposed system and its performance for various on-wafer test scenarios.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Siegel, Terahertz technology. IEEE Trans Microw Theory Tech 50(3), 910–928 (2002)

    Article  Google Scholar 

  2. J.-H. Son, Terahertz electromagnetic interactions with biological matter and their applications. J. Appl. Phys. 105(10), 102033 (2009)

    Article  Google Scholar 

  3. J. Federici, B. Schulkin, F. Huang, F. Gary, R. Barat, F. Oliveira, D. Zimdars, THz imaging and sensing for security applications - explosives, weapons and drugs. Semicond. Sci. Technol. 20(7), S266 (2005)

    Article  Google Scholar 

  4. H.-J. Song, T. Nagatsuma, Present and future of terahertz communications. IEEE Trans Terahertz Sci Tech 1(1), 256–263 (2011)

    Article  Google Scholar 

  5. X. Mei et al., First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process. IEEE Electron Device Letters 36(4), 327–329 (2015)

    Article  Google Scholar 

  6. M. Dyakonov, M. Shur, Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans Electron Devices 43(3), 380–387 (1996)

    Article  Google Scholar 

  7. K. Leong, W. Deal, V. Radisic, X.B. Mei, J. Uyeda, L. Samoska, T.G. Fung, R. Lai, A 340-380 GHz integrated CB-CPW-to- Waveguide transition for sub millimeter-wave MMIC packaging. IEEE Microw Wireless Comp Lett 19(6), 413–415 (2009)

    Article  Google Scholar 

  8. T. Reck, L. Chen, C. Zhang, A. Arsenovic, C. Groppi, A. Lichtenberger, R. Weikle, N. Barker, Micromachined probes for submillimeter-wave on-wafer measurements part I: Mechanical design and characterization. IEEE Trans Terahertz Sci Technol 1(2), 349–356 (2011)

    Article  Google Scholar 

  9. Q. Yu, M. Bauwens, C. Zhang, A. Lichtenberger, R. Weikle, N. Barker, Improved micromachined terahertz on-wafer probe using integrated strain sensor. IEEE Trans Microw Theory Tech 61(12), 4613–4620 (2013)

    Article  Google Scholar 

  10. C. Zhang, M. Bauwens, N.S. Barker, R.M. Weikle, A.W. Lichtenberger, A W-band micromachined on-wafer probe with integrated balun for characterization of differential circuits. IEEE Trans Microw Theory Tech 64(5), 1585–1593 (2016)

    Article  Google Scholar 

  11. C. Caglayan, G. C. Trichopoulos, and K. Sertel, On-wafer device characterization with non-contact probes in the THz band,” IEEE Antennas and Propagation Society International Symposium (APSURSI), (2013), pp. 1134–1135

    Google Scholar 

  12. C. Caglayan, G. C. Trichopoulos, and K. Sertel, Non-contact probes for device and integrated circuit characterization in the THz and mmW bands, IEEE MTT-S International Microwave Symposium, (Tampa, FL, 2014), pp. 1–3

    Google Scholar 

  13. C. Caglayan, G.C. Trichopoulos, K. Sertel, Non-contact probes for on-wafer characterization of sub-millimeter-wave devices and integrated circuits. IEEE Trans Microw Theory Tech 62(11), 2791–2801 (Nov. 2014)

    Article  Google Scholar 

  14. U.S. Patent 9,488,572; Nov. 8, 2016, Non-Contact Probe Measurement Test Bed for Millimeter Wave and Terahertz Circuits, Integrated Devices/Components, Systems for Spectroscopy Using Sub-Wavelength-Size Samples, Inventors: K. Sertel, G. Trichopoulos, and C. Caglayan

    Google Scholar 

  15. C. Caglayan and K. Sertel, Non-contact differential-mode on-wafer device characterization in the mmW and THz Bands, IEEE MTT-S International Microwave Symposium, (San Francisco, CA, 2016), pp. 1–3

    Google Scholar 

  16. U.S. Provisional Patent Application No. 62/338,570 filed May 19, 2016, On-Chip, Wideband, Differentially-Fed Antennas with Integrated Bias Structures, Inventors: Kubilay Sertel, Georgios Trichopoulos, and Cosan Caglayan

    Google Scholar 

  17. L. Chen, C. Zhang, T. Reck, A. Arsenovic, M. Bauwens, C. Groppi, A. Lichtenberger, R. Weikle, N. Barker, Terahertz micromachined on-wafer probes: Repeatability and reliability. IEEE Trans Microw Theory Tech 60(9), 2894–2902 (2012)

    Article  Google Scholar 

  18. A. Love, The diagonal horn antenna. Microw. J. 5, 117–122 (1962)

    Google Scholar 

  19. D. Filipovic, S. Gearhart, G. Rebeiz, Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses. IEEE Trans Microw Theory Tech 41(10), 1738–1749 (1993)

    Article  Google Scholar 

  20. G.C. Trichopoulos, H. Mosbacker, D. Burdette, K. Sertel, A broad- band focal plane array camera for real-time THz imaging applications. IEEE Trans Antennas Propag 61(4), 1733–1740 (2013)

    Article  Google Scholar 

  21. U.S. Patent 9,490,280; Nov. 8, 2016, Miniature Phase-Corrected Antennas for High Resolution Focal Plane THz Imaging Arrays, Inventors: K. Sertel, G. Mumcu

    Google Scholar 

  22. K. Sertel, J.L. Volakis, Integral Equation Methods for Electromagnetics (Scitech Publishing Inc, Chennai, 2012)

    Google Scholar 

  23. I. Rolfes, B. Schiek, LRR-a self-calibration technique for the calibration of vector network analyzers. IEEE Trans. Instrum. Meas. 52(2), 316–319 (2003)

    Article  Google Scholar 

  24. K. Wong, Uncertainty analysis of the weighted least squares VNA calibration, 64th ARFTG Microwave Measurements Conference, December 2004, pp. 23–31

    Google Scholar 

  25. Y. Karisan, C. Caglayan, G.C. Trichopoulos, K. Sertel, Lumped-element equivalent-circuit modeling of millimeter-wave HEMT parasitics through full-wave electromagnetic analysis. IEEE Trans Microw Theory Tech 64(5), 1419–1430 (2016)

    Article  Google Scholar 

  26. Y. Karisan, C. Caglayan, G.C. Trichopoulos, K. Sertel, Sub-millimeter-wave equivalent circuit model for external parasitics in double-finger HEMT topologies. J Infrared Millim Terahertz Waves 39(2), 142–160 (2018)

    Article  Google Scholar 

  27. Y. Li, J. Lopez, P.H. Wu, W. Hu, R. Wu, D.Y.C. Lie, A SiGe envelope-tracking power amplifier with an integrated CMOS envelope modulator for mobile WiMAX/3GPP LTE transmitters. IEEE Trans Microw Theory Tech 59(10), 2525–2536 (2011)

    Article  Google Scholar 

  28. J.Y.C. Liu, R. Berenguer, M.C.F. Chang, Millimeter-wave self-healing power amplifier with adaptive amplitude and phase linearization in 65-nm CMOS. IEEE Trans Microw Theory Tech 60(5), 1342–1352 (2012)

    Article  Google Scholar 

  29. D. Bockelman, W. Eisenstadt, Pure-mode network analyzer for on-wafer measurements of mixed-mode S-parameters of differential circuits. IEEE Trans Microw Theory Tech 45(7), 1071–1077 (1997)

    Article  Google Scholar 

  30. T. Zwick, U. Pfeiffer, Pure-mode network analyzer concept for on-wafer measurements of differential circuits at millimeter-wave frequencies. IEEE Trans Microw Theory Tech 53(3), 934–937 (2005)

    Article  Google Scholar 

  31. C. Zhang, M. Bauwens, N. Barker, R. Weikle, and A. Lichtenberger, A W-band balun integrated probe with common mode matching network, 2014 IEEE MTT-S International Microwave Symposium (IMS), June 2014, pp. 1–4

    Google Scholar 

  32. K. Jung, R. Campbell, P. Hanaway, M. Andrews, C. McCuen, W. Eisenstadt, R. Fox, Marchand balun embedded probe. IEEE Trans Microw Theory Tech 56(5), 1207–1214 (2008)

    Article  Google Scholar 

  33. K. Jung, L.A. Hayden, O.D. Crisalle, W.R. Eisenstadt, R.M. Fox, P. Hanaway, R.L. Campbell, C. McCuen, M. Lewis, A new characterization and calibration method for 3-dB-coupled on-wafer measurements. IEEE Trans Microw Theory Tech 56(5), 1193–1200 (2008)

    Article  Google Scholar 

  34. J. S. Kim, W. Eisenstadt, M. Andrew, and P. Hanaway, Analysis and design of impedance transformed balun integrated microwave probe for differential circuit measurement, 2008 IEEE MTT-S International Microwave Symposium (IMS), June 2008, pp. 56–61

    Google Scholar 

  35. E. Ojefors, B. Heinemann, U. Pfeiffer, Subharmonic 220- and 320-GHz SiGe HBT receiver front-ends. IEEE Trans Microw Theory Tech 60(5), 1397–1404 (May 2012)

    Article  Google Scholar 

  36. C. Caglayan, K. Sertel, Experimental analysis of repeatability and calibration residuals in on-wafer non-contact probing. IEEE Trans Microw Theory Tech 65(6), 2185–2191 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude for the support of the ONR DATE MURI program, and Dr. Paul Maki, the Program Manager. We also acknowledge the support and the leadership of the Project PI, Prof. Patrick Fay of Notre Dame University. Finally, we acknowledge the postdocs and graduate students that contributed to this effort.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kubilay Sertel or Georgios C. Trichopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sertel, K., Trichopoulos, G.C. (2020). Non-contact Metrology for mm-Wave and THz Electronics. In: Fay, P., Jena, D., Maki, P. (eds) High-Frequency GaN Electronic Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-20208-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20208-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20207-1

  • Online ISBN: 978-3-030-20208-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics