Skip to main content

Quantification of Cell-Matrix Interaction in 3D Using Optical Tweezers

  • Chapter
  • First Online:
Multi-scale Extracellular Matrix Mechanics and Mechanobiology

Abstract

The behavior of living cells is significantly affected by the mechanical properties of the surrounding soft extracellular matrix (ECM) comprising of various types of biopolymers. More complexity is added as cell-generated forces in turn can mechanically modify their microenvironment. Moreover, these forces can also act as mechanical signals for other cells leading to emergent collective cell dynamics. Bulk measurement techniques are not capable of resolving these local mechanical interactions which are often hidden in 3D, thus, optical tweezers have emerged as a powerful tool to directly characterize microscale mechanics and forces at play. In this chapter, we first introduce a typical experimental setup of optical tweezers and calibration methods that has been widely accepted by the mechanobiology community. Subsequently, we discuss various ways in which optical tweezers can be used to probe mechanics at different length scales such as the cytoplasm at the sub-cellular level, at the level of whole cell and finally explore the cell-cell and cell-matrix interaction. Later, perspectives on the future development of optical tweezers to study cell-matrix interaction is also provided.

Satish Kumar Gupta and Jiawei Sun contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbondanzieri, E.A., Greenleaf, W.J., Shaevitz, J.W., Landick, R., Block, S.M.: Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460 (2005)

    Google Scholar 

  2. Allersma, M.W., Gittes, F., Stewart, R.J., Schmidt, C.F.: Two-dimensional tracking of ncd motility by back focal plane interferometry. Biophys. J. 74, 1074–1085 (1998)

    Google Scholar 

  3. Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970)

    Google Scholar 

  4. Ashkin, A.: Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582 (1992)

    Google Scholar 

  5. Ashkin, A., Dziedzic, J.M.: Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987)

    Google Scholar 

  6. Ashkin, A., Dziedzic, J.M., Bjorkholm, J., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)

    Google Scholar 

  7. Ashkin, A., Dziedzic, J.M., Yamane, T.: Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769 (1987)

    Google Scholar 

  8. Baker, B.M., Chen, C.S.: Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues. J Cell Sci 125, 3015–3024 (2012)

    Google Scholar 

  9. Bambardekar, K., Clément, R., Blanc, O., Chardès, C., Lenne, P.-F.: Direct laser manipulation reveals the mechanics of cell contacts in vivo. Proc. Natl. Acad. Sci. 112, 1416–1421 (2015)

    Google Scholar 

  10. Bancelin, S., Aimé, C., Gusachenko, I., Kowalczuk, L., Latour, G., Coradin, T., Schanne-Klein, M.-C.: Determination of collagen fibril size via absolute measurements of second-harmonic generation signals. Nat. Commun. 5, 4920 (2014)

    Google Scholar 

  11. Bao, G., Suresh, S.: Cell and molecular mechanics of biological materials. Nat. Mater. 2, 715–725 (2003)

    Google Scholar 

  12. Bausch, A.R., Möller, W., Sackmann, E.: Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76, 573–579 (1999)

    Google Scholar 

  13. Berg-Sørensen, K., Flyvbjerg, H.: Power spectrum analysis for optical tweezers. Rev. Sci. Instrum. 75, 594–612 (2004)

    Google Scholar 

  14. Bianco, P.R., Brewer, L.R., Corzett, M., Balhorn, R., Yeh, Y., Kowalczykowski, S.C., Baskin, R.J.: Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409, 374 (2001)

    Google Scholar 

  15. Broedersz, C., Sheinman, M., MacKintosh, F.: Filament-length-controlled elasticity in 3D fiber networks. Phys Rev Lett 108, 078102 (2012)

    Google Scholar 

  16. Broedersz, C.P., MacKintosh, F.C.: Modeling semiflexible polymer networks. Rev. Mod. Phys. 86, 995 (2014)

    Google Scholar 

  17. Bronkhorst, P., Streekstra, G., Grimbergen, J., Nijhof, E., Sixma, J., Brakenhoff, G.: A new method to study shape recovery of red blood cells using multiple optical trapping. Biophys. J. 69, 1666 (1995)

    Google Scholar 

  18. Brown, R.A.: In the beginning there were soft collagen-cell gels: towards better 3D connective tissue models? Exp. Cell Res. 319, 2460–2469 (2013)

    Google Scholar 

  19. Burns, M.M., Fournier, J.-M., Golovchenko, J.A.: Optical matter: crystallization and binding in intense optical fields. Science 249, 749–754 (1990)

    Google Scholar 

  20. Bursac, P., et al.: Cytoskeletal remodelling and slow dynamics in the living cell. Nat. Mater. 4, 557 (2005)

    Google Scholar 

  21. Castelain, M., Rouxhet, P.G., Pignon, F., Magnin, A., Piau, J.-M.: Single-cell adhesion probed in-situ using optical tweezers: a case study with Saccharomyces cerevisiae. J. Appl. Phys. 111, 114701 (2012)

    Google Scholar 

  22. Chaudhuri, O., et al.: Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326 (2016)

    Google Scholar 

  23. Chen, B., Ji, B., Gao, H.: Modeling active mechanosensing in cell-matrix interactions. Annu. Rev. Biophys. 44, 1–32 (2015)

    Google Scholar 

  24. Chien, S.: Red cell deformability and its relevance to blood flow. Annu. Rev. Physiol. 49, 177–192 (1987)

    Google Scholar 

  25. Chowdhury, F., Na, S., Li, D., Poh, Y.-C., Tanaka, T.S., Wang, F., Wang, N.: Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat. Mater. 9, 82–88 (2010)

    Google Scholar 

  26. Cost, A.-L., Ringer, P., Chrostek-Grashoff, A., Grashoff, C.: How to measure molecular forces in cells: a guide to evaluating genetically-encoded FRET-based tension sensors. Cell. Mol. Bioeng. 8, 96–105 (2015)

    Google Scholar 

  27. Cukierman, E., Pankov, R., Yamada, K.M.: Cell interactions with three-dimensional matrices. Curr. Opin. Cell Biol. 14, 633–640 (2002)

    Google Scholar 

  28. Dao, M., Lim, C.T., Suresh, S.: Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259–2280 (2003)

    Google Scholar 

  29. Doyle, A.D., Yamada, K.M.: Cell biology: sensing tension. Nature 466, 192 (2010)

    Google Scholar 

  30. Dufrêne, Y.F., Evans, E., Engel, A., Helenius, J., Gaub, H.E., Müller, D.J.: Five challenges to bringing single-molecule force spectroscopy into living cells. Nat. Methods 8, 123 (2011)

    Google Scholar 

  31. Dutov, P., Antipova, O., Varma, S., Orgel, J.P., Schieber, J.D.: Measurement of elastic modulus of collagen type I single fiber. PloS One 11, e0145711 (2016)

    Google Scholar 

  32. Egerton, F.N.: A history of the ecological sciences, part 19: Leeuwenhoek’s microscopic natural history. Bull. Ecol. Soc. Am. 87, 47–58 (2006)

    Google Scholar 

  33. Ehrlicher, A.J., Krishnan, R., Guo, M., Bidan, C.M., Weitz, D.A., Pollak, M.R.: Alpha-actinin binding kinetics modulate cellular dynamics and force generation. Proc. Natl. Acad. Sci. 112, 6619–6624 (2015)

    Google Scholar 

  34. Elkhatib, N., Bresteau, E., Baschieri, F., Rioja, A.L., van Niel, G., Vassilopoulos, S., Montagnac, G.: Tubular clathrin/AP-2 lattices pinch collagen fibers to support 3D cell migration. Science 356, 4713 (2017)

    Google Scholar 

  35. Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    Google Scholar 

  36. Eriksen, R.L., Daria, V.R., Glückstad, J.: Fully dynamic multiple-beam optical tweezers. Opt. Express 10, 597–602 (2002)

    Google Scholar 

  37. Fällman, E., Axner, O.: Influence of a glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers. Appl. Opt. 42, 3915–3926 (2003)

    Google Scholar 

  38. Fodor, É., Guo, M., Gov, N., Visco, P., Weitz, D., van Wijland, F.: Activity-driven fluctuations in living cells. EPL (Europhys. Lett.) 110, 48005 (2015)

    Google Scholar 

  39. Gardel, M., Shin, J., MacKintosh, F., Mahadevan, L., Matsudaira, P., Weitz, D.: Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004)

    Google Scholar 

  40. Geiger, B., Bershadsky, A., Pankov, R., Yamada, K.M.: Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat. Rev. Mol. Cell Biol. 2, 793 (2001)

    Google Scholar 

  41. Grashoff, C., et al.: Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263 (2010)

    Google Scholar 

  42. Gumbiner, B.M.: Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345–357 (1996)

    Google Scholar 

  43. Gundersen, G.G., Worman, H.J.: Nuclear positioning. Cell 152, 1376–1389 (2013)

    Google Scholar 

  44. Guo, M., et al.: Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158, 822–832 (2014)

    Google Scholar 

  45. Guo, M., et al.: The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. Biophys. J. 105, 1562–1568 (2013)

    Google Scholar 

  46. Guo, M., et al.: Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proc. Natl. Acad. Sci. 2017, 05179 (2017)

    Google Scholar 

  47. Gupta, S.K., Guo, M.: Equilibrium and out-of-equilibrium mechanics of living mammalian cytoplasm. J. Mech. Phys. Solids 107, 284–293 (2017)

    Google Scholar 

  48. Gupta, S.K., Li, Y., Guo, M.: Anisotropic mechanics and dynamics of a living mammalian cytoplasm. Soft Matter 15, 190–199 (2019)

    Google Scholar 

  49. Han, Y.L., et al.: Cell contraction induces long-ranged stress stiffening in the extracellular matrix. Proc. Natl. Acad. Sci. 2017, 22619 (2018)

    Google Scholar 

  50. Han, Y.L., et al.: Engineering physical microenvironment for stem cell based regenerative medicine. Drug Discovery Today (2014)

    Google Scholar 

  51. Hanes, R.D., Jenkins, M.C., Egelhaaf, S.U.: Combined holographic-mechanical optical tweezers: construction, optimization, and calibration. Rev. Sci. Instrum. 80, 083703 (2009)

    Google Scholar 

  52. Heilbrunn, L.: The physical structure of the protoplasm of sea-urchin eggs. Am. Nat. 60, 143–156 (1926)

    Google Scholar 

  53. Heilbrunn, L.: The viscosity of protoplasm. Q. Rev. Biol. 2, 230–248 (1927)

    Google Scholar 

  54. Heisenberg, C.-P., Bellaïche, Y.: Forces in tissue morphogenesis and patterning. Cell 153, 948–962 (2013)

    Google Scholar 

  55. Henon, S., Lenormand, G., Richert, A., Gallet, F.: A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76, 1145–1151 (1999)

    Google Scholar 

  56. Hochmuth, R.M.: Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000)

    Google Scholar 

  57. Howard, J.: Mechanics of motor proteins and the cytoskeleton. Sunderland, MA: Sinauer Associates (2001)

    Google Scholar 

  58. Hu, J., Jafari, S., Han, Y., Grodzinsky, A.J., Cai, S., Guo, M.: Size-and speed-dependent mechanical behavior in living mammalian cytoplasm. Proc. Natl. Acad. Sci. 2017, 02488 (2017)

    Google Scholar 

  59. Huang, S., Ingber, D.E.: Cell tension, matrix mechanics, and cancer development. Cancer Cell 8, 175–176 (2005)

    Google Scholar 

  60. Huttenlocher, A., Sandborg, R.R., Horwitz, A.F.: Adhesion in cell migration. Curr. Opin. Cell Biol. 7, 697–706 (1995)

    Google Scholar 

  61. Ingber, D.E., et al.: Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. In: International Review of Cytology, vol. 150, pp. 173–224. Elsevier (1994)

    Google Scholar 

  62. Jansen, K.A., Atherton, P., Ballestrem, C.: Mechanotransduction at the cell-matrix interface. Semin Cell Dev. Biol. 71, 75–83 (2017)

    Google Scholar 

  63. Jones, C.A.R., Cibula, M., Feng, J., Krnacik, E.A., McIntyre, D.H., Levine, H., Sun, B.: Micromechanics of cellularized biopolymer networks. PNAS 112, E5117 (2015)

    Google Scholar 

  64. Juliar, B.A., Keating, M.T., Kong, Y.P., Botvinick, E.L., Putnam, A.J.: Sprouting angiogenesis induces significant mechanical heterogeneities and ECM stiffening across length scales in fibrin hydrogels. Biomaterials 162, 99–108 (2018)

    Google Scholar 

  65. Lang, N.R., et al.: Estimating the 3D pore size distribution of biopolymer networks from directionally biased data. Biophys J 105, 1967–1975 (2013)

    Google Scholar 

  66. Lange, J.R., Fabry, B.: Cell and tissue mechanics in cell migration. Exp. Cell Res. 319, 2418–2423 (2013)

    Google Scholar 

  67. Lau, A.W., Hoffman, B.D., Davies, A., Crocker, J.C., Lubensky, T.C.: Microrheology, stress fluctuations, and active behavior of living cells. Phys. Rev. Lett. 91, 198101 (2003)

    Google Scholar 

  68. Lee, W.M., Reece, P.J., Marchington, R.F., Metzger, N.K., Dholakia, K.: Construction and calibration of an optical trap on a fluorescence optical microscope. Nat. Protoc. 2, 3226 (2007)

    Google Scholar 

  69. Lekka, M., Laidler, P., Gil, D., Lekki, J., Stachura, Z., Hrynkiewicz, A.: Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur. Biophys. J. 28, 312–316 (1999)

    Google Scholar 

  70. Lieleg, O., Claessens, M.M., Heussinger, C., Frey, E., Bausch, A.R.: Mechanics of bundled semiflexible polymer networks. Phys. Rev. Lett. 99, 088102 (2007)

    Google Scholar 

  71. Liu, Y.-P., Li, C., Liu, K.-K., Lai, A.C.: The deformation of an erythrocyte under the radiation pressure by optical stretch. J. Biomech. Eng. 128, 830–836 (2006)

    Google Scholar 

  72. Maloney, J.M., Nikova, D., Lautenschläger, F., Clarke, E., Langer, R., Guck, J., Van Vliet, K.J.: Mesenchymal stem cell mechanics from the attached to the suspended state. Biophys. J. 99, 2479–2487 (2010)

    Google Scholar 

  73. Mammoto, T., Ingber, D.E.: Mechanical control of tissue and organ development. Development 137, 1407–1420 (2010)

    Google Scholar 

  74. Mao, H., Arias-Gonzalez, J.R., Smith, S.B., Tinoco Jr., I., Bustamante, C.: Temperature control methods in a laser tweezers system. Biophys. J. 89, 1308–1316 (2005)

    Google Scholar 

  75. Maragò, O.M., Jones, P.H., Gucciardi, P.G., Volpe, G., Ferrari, A.C.: Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 8, 807 (2013)

    Google Scholar 

  76. Maskarinec, S.A., Franck, C., Tirrell, D.A., Ravichandran, G.: Quantifying cellular traction forces in three dimensions. Proc. Natl. Acad. Sci. 106, 22108–22113 (2009)

    Google Scholar 

  77. Matheson, W., Markham, M.: Infantile cortical hyperostosis. Br. Med. J. 1, 742 (1952)

    Google Scholar 

  78. Mills, J., et al.: Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc. Natl. Acad. Sci. 104, 9213–9217 (2007)

    Google Scholar 

  79. Mio, C., Gong, T., Terray, A., Marr, D.: Design of a scanning laser optical trap for multiparticle manipulation. Rev. Sci. Instrum. 71, 2196–2200 (2000)

    Google Scholar 

  80. Mizuno, D., Tardin, C., Schmidt, C.F., MacKintosh, F.C.: Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007)

    Google Scholar 

  81. Munevar, S., Y-l, Wang, Dembo, M.: Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80, 1744–1757 (2001)

    Google Scholar 

  82. Neuman, K.C., Chadd, E.H., Liou, G.F., Bergman, K., Block, S.M.: Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77, 2856–2863 (1999)

    Google Scholar 

  83. Neuman, K.C., Nagy, A.: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491 (2008)

    Google Scholar 

  84. Nishizaka, T., Miyata, H., Yoshikawa, H., Si, Ishiwata, Kinosita Jr., K.: Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature 377, 251 (1995)

    Google Scholar 

  85. O’Brien, F.J., Harley, B., Yannas, I.V., Gibson, L.J.: The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26, 433–441 (2005)

    Google Scholar 

  86. Onck, P., Koeman, T., Van Dillen, T., van der Giessen, E.: Alternative explanation of stiffening in cross-linked semiflexible networks. Phys. Rev. Lett. 95, 178102 (2005)

    Google Scholar 

  87. Parsons, J.T., Horwitz, A.R., Schwartz, M.A.: Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010)

    Google Scholar 

  88. Pickup, M.W., Mouw, J.K., Weaver, V.M.: The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. e201439246 (2014)

    Google Scholar 

  89. Plodinec, M., et al.: The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7, 757 (2012)

    Google Scholar 

  90. Polacheck, W.J., Chen, C.S.: Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415 (2016)

    Google Scholar 

  91. Recho, P., Putelat, T., Truskinovsky, L.: Mechanics of motility initiation and motility arrest in crawling cells. J. Mech. Phys. Solids 84, 469–505 (2015)

    MathSciNet  Google Scholar 

  92. Ridge, K.M., et al.: Methods for determining the cellular functions of Vimentin intermediate filaments. In: Methods in Enzymology, vol. 568, pp. 389–426. Elsevier (2016)

    Google Scholar 

  93. Röding, M., Guo, M., Weitz, D.A., Rudemo, M., Särkkä, A.: Identifying directional persistence in intracellular particle motion using Hidden Markov Models. Math. Biosci. 248, 140–145 (2014)

    MathSciNet  MATH  Google Scholar 

  94. Sabass, B., Gardel, M.L., Waterman, C.M., Schwarz, U.S.: High resolution traction force microscopy based on experimental and computational advances. Biophys. J. 94, 207–220 (2008)

    Google Scholar 

  95. Santini, M.T., Rainaldi, G., Indovina, P.L.: Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids. Crit. Rev. Oncol./Hematol. 36, 75–87 (2000)

    Google Scholar 

  96. Sasaki, K., Koshioka, M., Misawa, H., Kitamura, N., Masuhara, H.: Pattern formation and flow control of fine particles by laser-scanning micromanipulation. Opt. Lett. 16, 1463–1465 (1991)

    Google Scholar 

  97. Schmid-Schönbein, H., Volger, E.: Red-cell aggregation and red-cell deformability in diabetes. Diabetes 25, 897–902 (1976)

    Google Scholar 

  98. Serra-Picamal, X., et al.: Mechanical waves during tissue expansion. Nat. Phys. 8, 628 (2012)

    Google Scholar 

  99. Sharma, A., Licup, A.J., Jansen, K.A., Rens, R., Sheinman, M., Koenderink, G.H., MacKintosh, F.C.: Strain-controlled criticality governs the nonlinear mechanics of fibre networks. Nat. Phys. 12, 584–587 (2016)

    Google Scholar 

  100. Sleep, J., Wilson, D., Simmons, R., Gratzer, W.: Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. Biophys. J. 77, 3085–3095 (1999)

    Google Scholar 

  101. Suresh, S., et al.: Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1, 15–30 (2005)

    Google Scholar 

  102. Svoboda, K., Block, S.M.: Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994)

    Google Scholar 

  103. Tambe, D.T., et al.: Collective cell guidance by cooperative intercellular forces. Nature Mater. 10, 469 (2011)

    Google Scholar 

  104. Vale, R.D.: The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003)

    Google Scholar 

  105. Visscher, K., Gross, S.P., Block, S.M.: Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J. Sel. Top. Quantum Electron. 2, 1066–1076 (1996)

    Google Scholar 

  106. Wang, N., Butler, J.P., Ingber, D.E.: Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993)

    Google Scholar 

  107. Weed, R.I., LaCelle, P.L., Merrill, E.W.: Metabolic dependence of red cell deformability. J. Clin. Invest. 48, 795–809 (1969)

    Google Scholar 

  108. Wu, P.-H., et al.: A comparison of methods to assess cell mechanical properties. Nat. Methods 15, 491–498 (2018)

    Google Scholar 

  109. Wyart, M., Liang, H., Kabla, A., Mahadevan, L.: Elasticity of floppy and stiff random networks. Phys. Rev. Lett. 101, 215501 (2008)

    Google Scholar 

  110. Xue, X. et al.: Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nat. Mater. (2018)

    Google Scholar 

  111. Zhu, C., Bao, G., Wang, N.: Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2, 189–226 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S.K., Sun, J., Han, Y.L., Lyu, C., He, T., Guo, M. (2020). Quantification of Cell-Matrix Interaction in 3D Using Optical Tweezers. In: Zhang, Y. (eds) Multi-scale Extracellular Matrix Mechanics and Mechanobiology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-20182-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20182-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20181-4

  • Online ISBN: 978-3-030-20182-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics