Skip to main content

Numerical Investigation of an Axis-based Approach to Rigid Registration

  • Conference paper
  • First Online:
Advances in Mechanism and Machine Science (IFToMM WC 2019)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 73))

Included in the following conference series:

  • 31 Accesses

Abstract

The term rigid registration identifies the process that optimally aligns different data sets whose information has to be merged, as in the case of robot calibration, image-guided surgery or patient-specific gait analysis.

One of the most common approaches to rigid registration relies on the identification of a set of fiducial points in each data set to be registered to compute the rototranslational matrix that optimally aligns them. Both measurement and human errors directly affect the final accuracy of the process. Increasing the number of fiducials may improve registration accuracy but it will also increase the time and complexity of the whole procedure, since correspondence must be established between fiducials in different data sets.

The aim of this paper is to present a new approach that resorts to axes instead of points as fiducial features. The fundamental advantage is that any axis can be easily identified in each data set by least-square linear fitting of multiple, unsorted measured data. This provides a way to filtering the measurement error within each data set, improving the registration accuracy with a reduced effort. In this work, a closed-form solution for the optimal axis-based rigid registration is presented. The accuracy of the method is compared with standard point-based rigid registration through a numerical test. Axis-based registration results one order of magnitude more accurate than point-based registration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cripton, P. A., Sati, M., Orr, T. E., Bourquin, Y., Dumas, G. A., Nolte, L. P.: Animation of in vitro biomechanical tests. J Biomech. 34(8), 1091-1096 (2001).

    Article  Google Scholar 

  2. Alam, F., Rahman, S. U., Ullah, S., Gulati, K.: Medical image registration in image guided surgery: Issues, challenges and research opportunities. Biocybernetics and Biomedical Engineering. 38(1), 71 – 89 (2018).

    Article  Google Scholar 

  3. Grunert, P., Darabi, K., Espinosa, J.; Filippi, R.: Computer-aided navigation in neurosurgery. Neurosurg Rev. 26(2), 73-99 (2003).

    Article  Google Scholar 

  4. Cleary, K., Peters, T.: Image-guided interventions: Technology review and clinical applications. Annual Review of Biomedical Engineering. 12, pp.119-142 (2010).

    Article  Google Scholar 

  5. Conconi, M., Sancisi. N., Parenti-Castelli, V.: Reconstruction of Knee Cartilage Distribution from Joint Motion, Proceedings of AIMETA, 602-610, Salerno, Italy (2017).

    Google Scholar 

  6. Forlani, M., Sancisi, N., Conconi, M., Parenti-Castelli, V.: A new test rig for static and dynamic evaluation of knee motion based on a cable-driven parallel manipulator loading system. Meccanica. 51(7), 1571-1581 (2016).

    Article  Google Scholar 

  7. Martelli, S., Sancisi, N., Conconi, M., Parenti-Castelli, V., Reynolds, K.: Sensitivity of musculoskeletal models to planar simplification of tibiofemoral motion. Proceedings of 8th World Congress of Biomechanics - WCB, Dublin; Irland (2018).

    Google Scholar 

  8. Smale, K. B., Conconi, M., Sancisi, N., Krogsgaard, M., Alkjaer, T., Parenti-Castelli, V., Benoit, D. L.: Effect of implementing magnetic resonance imaging for patient-specific OpenSim models on lower-body kinematics and knee ligament lengths. Journal of Biomechanics, in Press (2018).

    Google Scholar 

  9. Merriaux, P., Dupuis, Y., Boutteau, R., Vasseur, P., Savatier, X.: A study of Vicon system positioning performance. Sensors, 17, 1591 (2017).

    Article  Google Scholar 

  10. Morozov, M., Riise, J., Summan, R., Pierce, S. G., Mineo, C., MacLeod C. N., et al.: Assessing the accuracy of industrial robots through metrology for the enhancement of automated non-destructive testing. Proceedings of 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI) (2016).

    Google Scholar 

  11. Oliveira, F. P., Tavares, J. M.: Medical image registration: a review. Comput Methods Biomech Biomed Engin. 17(2), 73-93, (2014).

    Article  Google Scholar 

  12. Livyatan, H., Yaniv, Z., Joskowicz, L.: Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT. IEEE Transactions on Medical Imaging. 22(11), 1395-1406 (2003).

    Article  Google Scholar 

  13. Hill, D. L., Batchelor, P. G., Holden, M., Hawkes, D. J.: Medical image registration. Phys Med Biol. 46(3), 1-45 (2001).

    Article  Google Scholar 

  14. Peters, T. M.: Image-guidance for surgical procedures. Phys Med Biol. 51(14), R505-540 (2006).

    Article  Google Scholar 

  15. Schonemann, P. H.: A generalized solution of the orthogonal procrustes problem. Psychometrika. 31(1), 1-10 (1966).

    Article  MathSciNet  Google Scholar 

  16. Clarke, J., Deakin, A., Picard, F., Nicol, A.: Technical evaluation of the positional accuracy of computer assisted surgical systems. Journal of Bone and Joint Surgery, British Volume. 91-B(SUPP I), 398 (2009).

    Google Scholar 

  17. Kronreif, G., Ptacek, W., Kornfeld, M., Furst, M.: Evaluation of robotic assistance in neurosurgical applications. J Robot Surg. 6(1), 33-39 (2012).

    Article  Google Scholar 

  18. Fitzpatrick, J. M., West, J. B., Maurer, C. R.: Predicting error in rigid-body point-based regis-tration. IEEE Trans Med Imaging. 17(5), 694-702 (1998).

    Article  Google Scholar 

  19. Danilchenko, A., Fitzpatrick, J. M.: General approach to first-order error prediction in rigid point registration. IEEE Trans Med Imaging. 30(3), 679-693 (2011).

    Google Scholar 

  20. West, J. B., Fitzpatrick, J. M., Toms, S. A., Maurer, C. R., Maciunas, R. J.: Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery. 48(4), 810-816 (2001).

    Google Scholar 

  21. Wang, M., Song, Z.: Improving target registration accuracy in image-guided neurosurgery by optimizing the distribution of fiducial points. Int J Med Robot. 5(1), 26-31 (2009).

    Article  Google Scholar 

  22. Shamir, R. R., Joskowicz, L., Shoshan, Y.: Fiducial optimization for minimal target registration error in image-guided neurosurgery. IEEE Trans Med Imaging. 31(3), 725-737 (2012).

    Article  Google Scholar 

  23. Franaszek, M., Cheok, G. S.: Selection of Fiducial Locations and Performance Metrics for Point-Based Rigid-Body Registration. Precis Eng. 47, 362-374 (2017).

    Article  Google Scholar 

  24. Carlson, C.: How I Made Wine Glasses from Sunflowers url: http://blog.wolf-ram.com/2011/07/28/how-i-made-wine-glasses-from-sunflowers, last ac-cessed 2018/12/12.

  25. Balachandran, R., Welch, E. B., Dawant, B. M., Fitzpatrick, J. M.: Effect of MR distortion on targeting for deep-brain stimulation. IEEE Trans Biomed Eng. 57(7), 1729-1735 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Conconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Conconi, M., Sancisi, N., Parenti-Castelli, V. (2019). Numerical Investigation of an Axis-based Approach to Rigid Registration. In: Uhl, T. (eds) Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-20131-9_9

Download citation

Publish with us

Policies and ethics