Skip to main content

A personalized flexible exoskeleton for finger rehabilitation: a conceptual design

  • Conference paper
  • First Online:
Advances in Mechanism and Machine Science (IFToMM WC 2019)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 73))

Included in the following conference series:

Abstract

Several robotic rehabilitation systems have already been developed for the hand requiring the biological joints to be aligned with those of the exoskeleton making the standardization of this devices for different anthropomorphic sizes almost impossible. This problem together with the usage of rigid components can affect the natural movement of the hand and injure the user. Moreover, these systems are also typically expensive and are designed for in-clinic use as they are generally not portable.

Biomimetic and bioinspired inspiration using soft robotics can solve these issues. This paper aims to introduce the conceptual design of a personalized flexible exoskeleton for finger rehabilitation modelled around one specific user’s finger with the help of a 3D scanning procedure presenting a dynamic FEM analysis and a preliminary prototype obtaining a low-cost and easy to use and wear device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, E., and Silver M. The case for personalized medicine. (2009), 680-684.

    Article  Google Scholar 

  2. Smith, Richard. “Stratified, personalised, or precision medicine.” BMJ 39 (2012), pp. 143-158.

    Google Scholar 

  3. Ueki, S., Nishimoto, Y., Abe, M., Kawasaki, H., Ito, S., Ishigure, Y., Mizumoto, J., Ojika, T, Development of virtual reality exercise of hand motion assist robot for rehabilitation therapy by patient self-motion control. in: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008, (2008), pp. 4282–4285.

    Google Scholar 

  4. Jones, C.L., Wang, F., Morrison, R., Sarkar, N. and Kamper, D.G. Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke, IEEE/ASME Transactions on Mechatronics, (2014), 19(1), pp.131-140.

    Article  Google Scholar 

  5. Rus, D., Tolley, M.T. Design, fabrication and control of soft robots. Nature, 521, (2015), pp. 467–475.

    Article  Google Scholar 

  6. Shahid, T., Gouwanda, D., Nurzaman, S.G., Gopalai, A.A. Moving toward Soft Robotics: A Decade Review of the Design of Hand Exoskeletons.Biomimetics, 3(3), (2018), pp.17.

    Article  Google Scholar 

  7. Buchholz, B. and T. J. Armstrong, A kinematic model of the human hand to evaluate its prehensile capabilities, J Biomech, (1992), vol. 25, pp. 149-62.

    Article  Google Scholar 

  8. Zakia, H., Azlan, N.Z., Yusof, A.Z. Human hand motion analysis during different eating activities. Appl. Bionics Biomech., 12, (2018).

    Google Scholar 

  9. Meng, Q., Xiang, S. and Yu, H. Review and Challenges Surrounding the Technology, Advances in Engineering Research, vol. 86, (2017).

    Google Scholar 

  10. Polygerinos, P., Wang, Z., Galloway, K.C.l Wood, R.J., Walsh, C.J. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. (2015), 73, 135–143.

    Article  Google Scholar 

  11. Polygerinos, P., Galloway, K.C., Sanan, S., Herman, M., Walsh, C.J. EMG Controlled Soft Robotic Glove for Assistance during Activities of Daily Living. In Proceedings of ICORR 2015, Singapore, 11–14 August, (2015), pp. 55–60.

    Google Scholar 

  12. Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L.F., Mosadegh, B., Whitesides, G.M., Walsh, C.J. Towards a Soft Pneumatic Glove for Hand Rehabilitation. In IROS 2013, Tokyo, Japan, 3–7 November, (2013), pp. 1512–1517.

    Google Scholar 

  13. Yap, H.K., Kamaldin, N., Lim, J.H., Nasrallah, F.A., Goh, J.C., Yeow, C.H. A magnetic resonance compatible soft wearable robotic glove for hand rehabilitation and brain imaging. IEEE Trans. Neural Syst. Rehabil. Eng., (2017), 25, 782–793.

    Article  Google Scholar 

  14. Yap, H.K., Lim, J.H., Nasrallah, F., Cho Hong Goh, J., Yeow, C.H. Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications. J.Med. Eng. Technol., (2016), 40, 199–209.

    Article  Google Scholar 

  15. Yap, H.K., Lim, J.H., Nasrallah, F., Low, F.Z., Goh, J.C., Yeow, R.C. MRC-Glove. A fMRI Compatible Soft Robotic Glove for Hand Rehabilitation Application. In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August, (2015), pp. 735–740.

    Google Scholar 

  16. Yap, H.K., Ang, B.W., Lim, J.H., Goh, J.C., Yeow, C.H. A Fabric-Regulated Soft Robotic Glove with User Intent Detection Using EMG and RFID for Hand Assistive Application. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May, (2016), pp. 3537–3542.

    Google Scholar 

  17. Yap, H.K., Lim, J.H., Nasrallah, F., Goh, J.C., Yeow, R.C. A Soft Exoskeleton for Hand Assistive and Rehabilitation Application Using Pneumatic Actuators with Variable Stiffness. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May, (2015), pp. 4967–4972.

    Google Scholar 

  18. Yap, H.K., Lim, J.H., Nasrallah, F., Yeow, C.H. Design and preliminary feasibility study of a soft robotic glove for hand function assistance in stroke survivors. Front. Neurosci., (2017), 11, pp. 547.

    Google Scholar 

  19. Yap, H.K., Lim, J.H., Goh, J.C., Yeow, C.H. Design of a soft robotic glove for hand rehabilitation of stroke patients with clenched fist deformity using inflatable plastic actuators. J.Med. Devices, (2016), 10, 044504.

    Google Scholar 

  20. Yap, H.K., Ng, H.Y., Yeow, C.H. High-force soft printable pneumatics for soft robotic applications. Soft Robot, (2016), 9, 3, 144–158.

    Article  Google Scholar 

  21. Yap, H.K., Goh, J.C., Yeow, R.C. Design and Characterization of Soft Actuator for Hand Rehabilitation Application. In Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering, Dubrovnik, Croatia, 7–11 September 2014, Springer: Cham, Switzerland, (2015), pp. 367–370.

    Google Scholar 

  22. Kang, B.B., Lee, H., In, H., Jeong, U., Chung, J., Cho, K.J. Development of a Polymer-Based Tendon-Driven Wearable Robotic Hand. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May, (2016), pp. 3750–3755.

    Google Scholar 

  23. In, H., Kang, B.B., Sin, M. and Cho, K.J. Exo-Glove: a wearable robot for the hand with a soft tendon routing system. Robotics & Automation Magazine, (2015), 22(1), pp. 97-105.

    Google Scholar 

  24. Kang, B.B., In, H., Cho, K. Force Transmission in Joint-Less Tendon Driven Wearable Robotic Hand. In Proceedings of the 2012 12th International Conference on Control, Automation and Systems (ICCAS), Jeju Island, Korea, 17–21 October, (2012), pp. 1853–1858.

    Google Scholar 

  25. In, H., Cho, K.J. Evaluation of the Antagonistic Tendon Driven System for SNU Exo-Glove. In Proceedings of the 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju Island, Korea, 26–28 November, (2012), pp. 507–509.

    Google Scholar 

  26. In, H., Cho, K.J. Analysis of the forces on the finger joints by a joint-less wearable robotic hand, SNU Exo-Glove. In Converging Clinical and Engineering Research on Neurorehabilitation, Springer: Berlin/Heidelberg, Germany, (2013), pp. 93–97.

    Chapter  Google Scholar 

  27. Netter, F.H. Atlas of Human Anatomy. Elsevier Health Sciences, (2017), pp. 451.

    Google Scholar 

  28. Károly János, B., Ákos, J. and Károly, B. Force measurement of hand and fingers. Biomechanica Hungarica 3.1, 2010.

    Google Scholar 

  29. Cafolla, D. Ceccarelli, M., Wang, M.F, Carbone, G. 3D printing for feasibility check of mechanism design, International Journal of Mechanics and Control, (2016), (17)1, 2016, pp. 3-12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Cafolla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cafolla, D. (2019). A personalized flexible exoskeleton for finger rehabilitation: a conceptual design. In: Uhl, T. (eds) Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-20131-9_8

Download citation

Publish with us

Policies and ethics