Skip to main content

Automatic Truss Design Based on Topology Optimization and Image Processing Techniques

  • Conference paper
  • First Online:

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 73))

Abstract

Topology Optimization (TO) methods have been well developed for structural and multidisciplinary designs in terms of finding the optimal objective functions subject to constraints of loading conditions and other design requirements. In practical uses, clear black-and-white optimal designs are desired but may not be delivered at the end of the TO procedures. Therefore, many additional treatments such as regularization and filtering have been developed to produce black-and-white designs. Some of the said procedures were also found in the fields of computer vision and image processing. This paper presents a method to automatically generate truss designs by applying image-processing techniques to TO designs. The presented post-processing procedure includes noise removal, pattern thinning, and automatic determination of truss nodes linages. Several numerical examples were shown to demonstrated the presented methodology for automatic truss designs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michell, A.G.M.: LVIII. The limits of economy of material in frame-structures. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 8(47), 589-597 (1904).

    Article  MATH  Google Scholar 

  2. Prager, W.: Optimality criteria derived from classical extremum principles. SM Studies Series, Solid Mechanics Division, Univ of Waterloo, Ontario/CANADA (1969).

    Google Scholar 

  3. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering 71(2), 197-224 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bendsoe, M.P.: Optimization of structural topology, shape, and material. Springer (1995).

    Google Scholar 

  5. Manuel, M.C.E., Lin, P.T. Physical-based Material Property Models for Heat Conduction Topology Optimization. In: Asian Congress of Structural and Multidisciplinary Optimization, ACSMO 2016, 23, Nagasaki, Japan, (2016).

    Google Scholar 

  6. Manuel, M.C.E., Lin, P.T. Performance of Alternative Material Property Models for Heat Conduction Topology Optimization. In: Asian Congress of Structural and Multidisciplinary Optimization, ACSMO 2016, 24, Nagasaki, Japan, (2016).

    Google Scholar 

  7. Manuel, M.C.E.: A Complete Research on Material Property Models on Heat Conduction Topology Optimization. PhD Dissertation, Department of Mechanical Engineering, Chung Yuan Christian University (2016).

    Google Scholar 

  8. Manuel, M.C.E., Lin, P.T.: Design Explorations of Heat Conductive Pathways. International Journal of Heat and Mass Transfer 104, 835-851 (2017).

    Article  Google Scholar 

  9. Stolpe, M., Svanberg, K.: An alternative interpolation scheme for minimum compliance topology optimization. Structural and Multidisciplinary Optimization 22(2), 116-124 (2001).

    Article  Google Scholar 

  10. Bruns, T.E.: A reevaluation of the SIMP method with filtering and an alternative formulation for solid–void topology optimization. Structural and Multidisciplinary Optimization 30(6), 428-436 (2005).

    Article  Google Scholar 

  11. Keey, R.B.: Drying: principles and practice. Elsevier (2013).

    Google Scholar 

  12. Hamilton, R.L., Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals 1(3), 187-191 (1962).

    Google Scholar 

  13. Kirkpatrick, S.: Percolation and conduction. Reviews of modern physics 45(4), 574 (1973).

    Article  Google Scholar 

  14. Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on image processing 6(2), 298-311 (1997).

    Article  Google Scholar 

  15. Wang, M.Y., Zhou, S., Ding, H.: Nonlinear diffusions in topology optimization. Structural and Multidisciplinary Optimization 28(4), 262-276 (2004).

    Google Scholar 

  16. Sapiro, G.: Geometric partial differential equations and image analysis. Cambridge university press (2006).

    Google Scholar 

  17. Sigmund, O.: Morphology-based black and white filters for topology optimization. Structural and Multidisciplinary Optimization 33(4-5), 401-424 (2007).

    Article  Google Scholar 

  18. Sigmund, O.: On the design of compliant mechanisms using topology optimization. Journal of Structural Mechanics 25(4), 493-524 (1997).

    Article  Google Scholar 

  19. Bourdin, B.: Filters in topology optimization. International Journal for Numerical Methods in Engineering 50(9), 2143-2158 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, J.-S.: Digital image enhancement and noise filtering by use of local statistics. IEEE transactions on pattern analysis and machine intelligence(2), 165-168 (1980).

    Article  Google Scholar 

  21. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE transactions on acoustics, speech, and signal processing 29(6), 1153-1160 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, W., Zhong, W., Guo, X.: An explicit length scale control approach in SIMP-based topology optimization. Computer Methods in Applied Mechanics and Engineering 282, 71-86 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  23. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62-66 (1979).

    Article  Google Scholar 

  24. Rosenfeld, A., Davis, L.S.: A Note on Thinning. IEEE Transactions on Systems, Man, and Cybernetics SMC-6(3), 226-228 (1976).

    Article  MATH  Google Scholar 

  25. Bremicker, M., Chirehdast, M., Kikuchi, N., Papalambros, P.: Integrated Topology and Shape Optimization in Structural Design∗. Journal of Structural Mechanics 19(4), 551-587 (1991).

    Article  Google Scholar 

  26. Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural optimization 16(1), 68-75 (1998).

    Article  Google Scholar 

  27. Svanberg, K.: The method of moving asymptotes- a new method for structural optimization. International Journal for Numerical Methods in Engineering 24(2), 359-373 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  28. Sigmund, O.: A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization 21(2), 120-127 (2001).

    Article  MathSciNet  Google Scholar 

  29. Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S., Sigmund, O.: Efficient topology optimization in MATLAB using 88 lines of code. Structural and Multidisciplinary Optimization 43(1), 1-16 (2011).

    Article  MATH  Google Scholar 

  30. Liu, K., Tovar, A.: An efficient 3D topology optimization code written in Matlab. Structural and Multidisciplinary Optimization 50(6), 1175-1196 (2014).

    Article  MathSciNet  Google Scholar 

  31. Zhang, S., Fu, K.: A thinning algorithm for discrete binary images. In: Proc. Int. Conf. Computers and Applications, pp. 879-886, (1984).

    Google Scholar 

  32. Liu, J., Gea, H.C., Du, P.A.: Robust Structural Design Optimization Under Non- Probabilistic Uncertainties. In: ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1223-1229, (2011).

    Google Scholar 

  33. Liu, J., Gea, H.C.: Robust topology optimization under multiple independent unknown-but- bounded loads. Computer Methods in Applied Mechanics and Engineering 329, 464-479 (2018).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the “Center for Cyber-physical System Innovation” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po Ting Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, P.T., Lin, CY., Cheng, TY. (2019). Automatic Truss Design Based on Topology Optimization and Image Processing Techniques. In: Uhl, T. (eds) Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-20131-9_46

Download citation

Publish with us

Policies and ethics