Skip to main content

Multi-criteria design optimization of cam mechanisms combining different splines given by checkpoints

  • Conference paper
  • First Online:
Advances in Mechanism and Machine Science (IFToMM WC 2019)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 73))

Included in the following conference series:

  • 38 Accesses

Abstract

This paper proposes a universal optimal approach to cam curve design. This approach consists of three main issues: the polynomial representation of splines given by checkpoints defining the specific motion of the follower; the connection of these splines by different degree of fitting in order to combine them in the entire cam profile and the optimization according to the objectives and the constraints formulated for different zones of the cam profile. An illustrative example is given based on the optimization of a production machine cam profile. The given simulation results show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsay, D.M., Lin, B.J.: Improving the geometry design of cylindrical cams using nonparametric rational B-spline, Comput.-Aided Des. 28 (1), 5–15. (1996)

    Article  Google Scholar 

  2. Wu, L.I., Liu, C.H., Chen, T.W.: Disc cam mechanisms with concave-faced followers, Proc. IMechE, Part C: J Mech. Eng. Sci. 223 (6), 1443–1448. (2009)

    Google Scholar 

  3. Sateesh, N., Rao, C.S.P., Janardhan Reddy, T.A.: Optimisation of cam-follower motion using B-splines, Int. J. Comput. Integr. Manuf. 22 (6), 515–523. (2009)

    Article  Google Scholar 

  4. Xiao, H.S., Zu, J.W.: Cam profile optimization for a new cam drive, J. Mech. Sci. Technol. 23 (10), 2592–2602. (2009)

    Article  Google Scholar 

  5. Reeve, J.: Cams for Industry: A Handbook for Designers of Special Purpose Machines. s.l.: Amer Society of Mechanical, (1995).

    Google Scholar 

  6. Chen, Y.F.: Mechanics and Design of Cam Mechanisms, Pergamon Press, USA, (1982).

    Google Scholar 

  7. Norton, R.: Cam design and manufacturing handbook, Industrial Press, Inc., New York, (2002).

    Google Scholar 

  8. Bouzakis, K.D., Mitsi, S., Tsiafis, I.: Computer aided optimum design and NC milling of planar cam mechanisms, International Journal of Machine Tools and Manufacture, Vol. 37, No. 8, 1131-1142. (1997).

    Article  Google Scholar 

  9. Mitsi, S., Bouzakis, K.-D., Tsiafis, J., Mansour, G.: Optimal synthesis of cam mechanism using cubic spline interpolation for cam NC milling. Journal of the Balkan Tribological Association, Vol. 7, No. 4, 225-233. (2001)

    Google Scholar 

  10. Tsiafis, I., Paraskevopoulou, R., Bouzakis, K.-D.: Selection of optimal design parameters for a cam mechanism using multi-objective genetic algorithm, Annals of the “Constantin Brancusi” University of TarguJiu, Engineering series, nr. 2, Romania, 57- 66. (2009).

    Google Scholar 

  11. Mansour, G., Sagris, D., Tsiafis, Ch., Mitsi, S., Bouzakis, K.-D.: Evolution of Hybrid Method for Industrial Manipulator Design Optimization, Journal of Production Engineering, Vol. 16, No. 1, 35-38. (2013)

    Google Scholar 

  12. Bouzakis, K.-D. et all.: Effect of film ion bombardment during the pvd process on the mechanical properties and cutting performance of TiAlN coated tools, Surface and Coatings Technology, Vol. 202, 826-830. (2007)

    Article  Google Scholar 

  13. Bobzin, K. et all.: Vanadium Alloyed PVD CrAlN Coatings for Friction Reduction in Metal Forming Applications, Tribology in Industry, Vol. 34, N. 2, pp. 101-107. (2012).

    Google Scholar 

  14. Flocker, F.W.: Addressing cam wear and follower jump in single-dwell cam-follower systems with an adjustable modified trapezoidal acceleration cam profile, J. Eng. Gas. Turbines Power 131 (3), pp. 327–335. (2009)

    Google Scholar 

  15. Acharyya, S., Naskar, T.K.: Fractional polynomial mod traps for optimization of jerk and hertzian contact stress in cam surface, Comput. Struct. 86 (3–5), pp. 322–329, (2008)

    Article  Google Scholar 

  16. Cardona, A., Lens, E., Nigro, N.: Optimal design of cams, Multibody Syst. Dyn. 7 (3), pp. 285–305. (2002)

    Google Scholar 

  17. Andresen, U., Singhose, W.: A simple procedure for modifying high-speed cam profiles for vibration reduction, J. Mech. Des., Trans. ASME 126 (6), pp. 1105–1108. (2004)

    Article  Google Scholar 

  18. Flocker, F.W.: Controlling the frequency content of inertia forces in dwelling cam-follower systems, J. Mech. Des., Trans. ASME 129 (5), pp. 546–552. (2007)

    Article  Google Scholar 

  19. Hwang, W.M., Yu, C.Z.: Optimal synthesis of the adjustable knock-out cam-follower mechanism of a bolt former, Proc. IMechE, Part C: J Mech. Eng. Sci. 219 (8), pp. 767–774. (2005)

    Google Scholar 

  20. Kaplan, H.: Mathematical modeling and simulation of high-speed cam mechanisms to minimize residual vibrations, Proc. IMechE, Part C: J Mech. Eng. Sci. 22 (13), pp. 2402–2415. (2014)

    Google Scholar 

  21. Qin, W.J., He, J.Q.: Optimum design of local cam profile of a valve train, Proc. IMechE, Part C: J Mech. Eng. Sci. 224 (11), pp. 2487–2492. (2010)

    Google Scholar 

  22. Xiao, H.S., Zu, J.W.: Cam profile optimization for a new cam drive, J. Mech. Sci. Technol. 23 (10), pp. 2592–2602. (2009)

    Article  Google Scholar 

  23. Cabrera, J.A., Simon, A., Prado. M.: Optimal synthesis of mechanisms with genetic algorithms. Mechanism and machine theory. Volume 37, Issue 10, pp. 1165-1177. (2002)

    Google Scholar 

  24. Ottaviano, E. et all.: Numerical and experimental analysis of non-circular gears and cam- follower systems as function generators. Mech. and Mach. Theory 43 (8), pp. 996-1008. (2007).

    Article  Google Scholar 

  25. Mandal, M., Naskar, T.K.: Introduction of control points in splines for synthesis of optimized cam motion program, Mech. Mach. Theory 44 (1), pp.255–271. (2009)

    Article  Google Scholar 

  26. Mermelstein, S.P., Acar, M.: Optimising cam motion using piecewise polynomials, Eng. Comput. 19 (4), pp. 241–254. (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vigen Arakelian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moussafir, L., Arakelian, V. (2019). Multi-criteria design optimization of cam mechanisms combining different splines given by checkpoints. In: Uhl, T. (eds) Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-20131-9_44

Download citation

Publish with us

Policies and ethics