Skip to main content

Higher Order Quantum Superintegrability: A New “Painlevé Conjecture”

Higher Order Quantum Superintegrability

  • Chapter
  • First Online:

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

We review recent results on superintegrable quantum systems in a two-dimensional Euclidean space with the following properties. They are integrable because they allow the separation of variables in Cartesian coordinates and hence allow a specific integral of motion that is a second order polynomial in the momenta. Moreover, they are superintegrable because they allow an additional integral of order N > 2. Two types of such superintegrable potentials exist. The first type consists of “standard potentials” that satisfy linear differential equations. The second type consists of “exotic potentials” that satisfy nonlinear equations. For N = 3, 4, and 5 these equations have the Painlevé property. We conjecture that this is true for all N ≥ 3. The two integrals X and Y  commute with the Hamiltonian, but not with each other. Together they generate a polynomial algebra (for any N) of integrals of motion. We show how this algebra can be used to calculate the energy spectrum and the wave functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  2. M.J. Ablowitz, A. Ramani, H. Segur, Non-linear evolution equations and ordinary differential-equations of Painlevé type. Lett. al Nuovo Cimento 23, 333 (1978)

    Article  MathSciNet  Google Scholar 

  3. I. Abouamal, P. Winternitz, Fifth-order superintegrable quantum system separating in Cartesian coordinates. Doubly exotic potentials. J. Math. Phys. 59, 022104 (2018)

    MATH  Google Scholar 

  4. A. Andrianov, M. Ioffe, V.P. Spiridonov, Higher-derivative supersymmetry and the Witten index. Phys. Lett. A 174, 273 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Andrianov, F. Cannata, M. Ioffe, D. Nishnianidze, Systems with higher-order shape invariance: spectral and algebraic properties. Phys. Lett. A 266, 341–349 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Ballesteros, O. Ragnisco, A systematic construction of completely integrable Hamiltonians from coalgebras. J. Phys. A Math. Gen. 31, 3791 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Ballesteros, A. Blasco, F.J. Herranz, F. Musso, O. Ragnisco, (Super)integrability from coalgebra symmetry: formalism and applications. J. Phys. Conf. Ser. 175, 012004 (2009)

    Google Scholar 

  8. A. Ballesteros, A. Enciso, F.J. Herranz, D. Latini, O. Ragnisco, D. Riglioni, The classical Darboux III oscillator: factorization, spectrum generating algebra and solution to the equations of motion. J. Phys. Conf. Ser. 670, 012031 (2016)

    Article  Google Scholar 

  9. A. Ballesteros, F.J. Herranz, S. Kuru, J. Negro, The anisotropic oscillator on curved spaces: a new exactly solvable model. Ann. Phys. 373, 399 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. V. Bargmann, Zur theorie des Wasserstoffatoms. Z. Phys. 99, 576 (1936)

    Article  ADS  Google Scholar 

  11. J.L.F. Bertrand, Théoreme relatif au mouvement d’un point attiré vers un centre fixe. C. R. Acad. Sci. 77, 849 (1873)

    MATH  Google Scholar 

  12. D. Bonatsos, C. Daskaloyannis, K. Kokkotas, Quantum algebraic description of quantum superintegrable systems in 2 dimensions. Phys. Rev. A 48(5), R23407–R3410 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  13. F.J. Bureau, Differential equations with fixed critical points. Annali di Matematica LXIV, 229–364 (1964)

    Google Scholar 

  14. F.J. Bureau, Differential equations with fixed critical points. Annali di Matematica LXVI, 1–116 (1964)

    Google Scholar 

  15. J.M. Carballo, D.J. Fernandez C, J. Negro, L.M. Nieto, Polynomial Heisenberg algebras. J. Phys. A 37, 10349, 25J (2004)

    Google Scholar 

  16. J.F. Carinena, F.J. Herranz, M.F. Ranada, Superintegrable systems on 3-dimensional curved spaces: Eisenhart formalism and separability. J. Math. Phys. 58, 022701 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. E. Celeghini, S. Kuru, J. Negro, M.A. del Olmo, A unified approach to quantum and classical TTW systems based on factorization. Ann. Phys. 332, 27–37 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. J. Chazy, Sur les équations différentielles du troisieme ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes. Acta Math. 34, 317–385 (1911)

    Article  MathSciNet  Google Scholar 

  19. R. Conte, The Painlevé Approach to Nonlinear Ordinary Differential Equations. The Painlevé property, one century later, pp. 77–180 (Springer, New York, 1999)

    Chapter  Google Scholar 

  20. R. Conte, M. Musette, The Painlevé Handbook (Springer, Berlin, 2008)

    MATH  Google Scholar 

  21. C.M. Cosgrove, Higher-order Painlevé equation in the polynomial class I: bureau Symbol P2. Stud. Appl. Math. 104, 1–65 (2000)

    Article  MathSciNet  Google Scholar 

  22. C.M. Cosgrove, Chazy classes IX–XI of third-order differential equations. Stud. Appl. Math. 104, 171–228 (2000)

    Article  MathSciNet  Google Scholar 

  23. C.M. Cosgrove, Higher-order Painlevé equation in the polynomial class II: bureau symbol P1. Stud. Appl. Math. 116, 321–413 (2006)

    Article  MathSciNet  Google Scholar 

  24. C.M. Cosgrove, G. Scoufis, Painlevé classification of a class of differential equations of the second order and second degree. Stud. Appl. Math. 88, 25–87 (1993)

    Article  MathSciNet  Google Scholar 

  25. E. D’Hoker, L. Vinet, Supersymmetry of the Pauli equation in the presence of a magnetic monopole. Phys. Lett. B 137, 1, 72 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  26. C. Daskaloyannis, Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic algebras of quantum superintegrable systems. J. Math. Phys. 42, 1100–1119 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  27. H. De Bie, V.X. Genest, J.-M. Lemay, L. Vinet, A superintegrable model with reflections on S n−1 and the higher rank Bannai-Ito algebra. J. Phys. A Math. Theor. 50(19), 195202 (2017)

    Google Scholar 

  28. A.M. Escobar Ruiz, E.G. Kalnins, W. Miller Jr., E. Subag, Bocher and abstract contractions of 2nd order quadratic algebras. SIGMA 13, 013, 38 pp. (2017)

    Google Scholar 

  29. A.M. Escobar-Ruiz, J.C. Lopez Vieyra, P. Winternitz. Fourth order superintegrable systems separating in Polar Coordinates. I. Exotic potentials. J. Phys. A 50(49), 495206 (2017)

    Google Scholar 

  30. A.M. Escobar-Ruiz, J.C. Lopez Vieyra, P. Winternitz, I. Yurdusen. Fourth order superintegrable systems separating in Polar Coordinates. II. Standard potentials. J. Phys. A: Math. Theor. 51, 455202 (2018)

    ADS  MATH  Google Scholar 

  31. A.M. Escobar-Ruiz, P. Winternitz, I. Yurdusen, General Nth order superintegrable systems separating in polar coordinates. J. Phys. A: Math. Theor. 51, 40LT01 (2018)

    Google Scholar 

  32. V. Fock, Zur theorie des wasserstoffatoms. Z. Phys. A 98, 145 (1935)

    Article  Google Scholar 

  33. I. Fris, V. Mandrosov, J. Smorodinsky, M. Uhlíř, P. Winternitz, On higher symmetries in quantum mechanics. Phys. Lett. 16, 354 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  34. B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critiques fixes. Acta Math. 33, 1 (1910)

    Article  MathSciNet  Google Scholar 

  35. V. Genest, I. Mourad, The Dunkl oscillator in the plane: I. Superintegrability, separated wavefunctions and overlap coefficients. J. Phys. A: Math. Theor. 46, 14, 145201 (2013)

    Google Scholar 

  36. V. Genest, L. Vinet, A. Zhedanov, Superintegrability in two dimensions and the Racah-Wilson algebra. Lett. Math. Phys. 104, 931 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  37. V.X. Genest, L. Vinet, A. Alexei, Superintegrability in two dimensions and the Racah-Wilson algebra. Lett. Math. Phys. 104, 8, 931 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  38. H. Goldstein, C.P. Poole, J.L. Safko, Classical Mechanics (Addison-Wesley, Reading, 2001)

    MATH  Google Scholar 

  39. D. Gomez-Ullate, N. Kamran, R. Milson, Exceptional orthogonal polynomials and the Darboux transformation. J. Phys. A 43, 434016 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  40. D. Gomez Ullate, Y. Grandati, R. Milson, Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials. J. Phys. A Math. Theor. 47, 015203 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  41. Y. Granovskii, I. Lutzenko, A.Z. Zhedanov, Mutual integrability, quadratic algebras and dynamic symmetry. Ann. Phys. 217, 1–20 (1992)

    Article  ADS  Google Scholar 

  42. S. Gravel, Hamiltonians separable in Cartesian coordinates and third-order integrals of motion. J. Math. Phys. 45, 1003–19 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  43. S. Gravel, P. Winternitz, Superintegrability with third order integrals in quantum and classical mechanics. J. Math. Phys. 43, 5902–5912 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  44. A.N.W. Hone, Painlevé tests, singularity structure and integrability, in Integrability, pp. 245–277 (Springer, Berlin, 2009)

    Google Scholar 

  45. M.F. Hoque, Superintegrable systems, polynomial algebra structures and exact derivations of spectra, Ph.D. thesis, School of Mathematics and Physics, The University of Queensland, Australia, January, 175 pages, 2018, arXiv:1802.08410

    Google Scholar 

  46. M.F. Hoque, I. Marquette, Y.-Z. Zhang, Quadratic algebra structure in the 5D Kepler system with non-central potentials and Yang-Coulomb monopole interaction. Ann. Phys. 380, 121–134 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  47. P. Iliev, Symmetry algebra for the generic superintegrable system on the sphere. J. High Energy Phys. 2, 44, 22 pp. (2018)

    Google Scholar 

  48. E.L. Ince, Ordinary Differential Equations, 574pp. (Dover, New York, 1956)

    Google Scholar 

  49. J.M. Jauch, E.L. Hill, The problem of degeneracy in quantum mechanics. Phys. Rev. 57, 641–645 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  50. G. Junker, Supersymmetric Methods in Quantum and Statistical Physics (Springer, New York, 1995)

    MATH  Google Scholar 

  51. E.G. Kalnins, Separation of Variables for Riemannian Spaces of Constant Curvature, p. 196 (Addison-Wesley, Reading, 1986)

    Google Scholar 

  52. E.G. Kalnins, J.M. Kress, W. Miller Jr., A recurrence relation approach to higher order quantum superintegrability. SIGMA 7, 031 (2011)

    MathSciNet  MATH  Google Scholar 

  53. E.G. Kalnins, J.M. Kress, W. Miller, Separation of Variables and Superintegrability: The Symmetry of Solvable Systems (IOP, Bristol, 2018)

    Google Scholar 

  54. G.E. Kalnins, W. Miller Jr., S. Post, Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials. SIGMA 9, 057, 28 pp. (2013)

    Google Scholar 

  55. M.D. Kruskal, P.A. Clarkson, The Painlevé-Kowalevski and poly-Painlevé tests for integrability. Stud. Appl. Math. 86, 87–165 (1992)

    Article  MathSciNet  Google Scholar 

  56. P. Letourneau, L. Vinet, Superintegrable systems, polynomial algebras and quasi-exactly solvable Hamiltonian. Ann. Phys. 243, 1, 144 (1995)

    Google Scholar 

  57. Y. Liao, I. Marquette, Y.-Z. Zhang, Quantum superintegrable system with a novel chain structure of quadratic algebras. J. Phys. A: Math. Theor. 51, 255201, 13pp. (2018)

    Google Scholar 

  58. A. Makarov, J. Smorodinsky, Kh. Valiev, P. Winternitz, A systematic search for non-relativistic systems with dynamical symmetries. Nuovo Cimento A 52, 1061–1084 (1967)

    Article  ADS  Google Scholar 

  59. A. Marchesiello, L. Šnobl, Superintegrable 3D systems in a magnetic field corresponding to Cartesian separation of variables. J. Phys. A Math. Theor. 50, 245202 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  60. A. Marchesiello, L. Šnobl, P. Winternitz, Three-dimensional superintegrable systems in a static electromagnetic field. J. Phys. A 48, 395206 (2015)

    Article  MathSciNet  Google Scholar 

  61. A. Marchesiello, L. Šnobl, P. Winternitz, Spherical type integrable classical systems in a magnetic field. J. Phys. A Math. Theor. 51, 135205 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  62. I. Marquette, Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. I. Rational function potentials, J. Math. Phys. 50, 012101 (2009)

    Google Scholar 

  63. I. Marquette, Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II. Painlevé transcendent potentials. J. Math. Phys. 50, 095202 (2009)

    MathSciNet  MATH  Google Scholar 

  64. I. Marquette, An infinite family of superintegrable systems from higher order ladder operators and supersymmetry. J. Phys. Conf. Ser. 284, 012047 (2011)

    Article  Google Scholar 

  65. I. Marquette, C. Quesne, New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials. J. Math. Phys. 54, 042102 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  66. I. Marquette, C. Quesne, Combined state-adding and state-deleting approaches to type III multi-step rationally-extended potentials: applications to ladder operators and superintegrability. J. Math. Phys. 55, 112103 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  67. I. Marquette, C. Quesne, Connection between quantum systems involving the fourth Painleve transcendent and k-step rational extensions of the harmonic oscillator related to Hermite EOP. J. Math. Phys. 57, 052101 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  68. I. Marquette, P. Winternitz, Polynomial Poisson algebras for classical superintegrable systems with a third order integral of motion. J. Math. Phys. 48, 012902, 1–16 (2007). Erratum 49,019907

    Google Scholar 

  69. I. Marquette, P. Winternitz, Superintegrable systems with third order integrals of motion. J. Phys. A. Math. Theor. 41, 303031 (2008)

    Article  MathSciNet  Google Scholar 

  70. I. Marquette, M. Sajedi, P. Winternitz, Fourth order superintegrable systems separating in Cartesian coordinates I. Exotic quantum potentials. J. Phys. A 50, 315201 (2017)

    MATH  Google Scholar 

  71. I. Marquette, M. Sajedi, P. Winternitz, Two-dimensional superintegrable systems from operator algebras in one dimension. J. Phys. A 52, 115202 (2019)

    Article  ADS  Google Scholar 

  72. J. Mateo, J. Negro, Third-order differential ladder operators and supersymmetric quantum mechanics. J. Phys. A Math. Theor. 41, 045204 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  73. W. Miller, Symmetry and Separation of Variables, p. 285 (Addison-Wesley, Reading, 1977)

    Google Scholar 

  74. W. Miller, S. Post, P. Winternitz. Classical and quantum superintegrability with applications. J. Phys. A 46, 423001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  75. M. Moshinsky, Yu.F. Smirnov, The Harmonic Oscillator in Modern Physics (Harwood Academic, New York, 1996)

    MATH  Google Scholar 

  76. N.N. Nekhoroshev, Action-angle variables and their generalizations. Trans. Moscow Math. Soc. 26, 180 (1972)

    MathSciNet  MATH  Google Scholar 

  77. A.G. Nikitin, Higher-order symmetry operators for Schrödinger equation, in Superintegrability in Classical and Quantum Systems. CRM Proceedings and Lecture Notes, vol. 37 (American Mathematical Society, Providence, RI, 2004)

    Google Scholar 

  78. A.G. Nikitin, New exactly solvable systems with Fock symmetry. J. Phys. A Math. Theor. 45, 485204 (2012)

    Article  MathSciNet  Google Scholar 

  79. A.G. Nikitin, Laplace-Runge-Lenz vector for arbitrary spin. J. Math. Phys. 54, 123506 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  80. Yu.A. Orlov, E.I. Shulman, Additional symmetries of the nonlinear Schrodinger equation. Theor. Math. Phys. 64, 862 (1985)

    Article  MathSciNet  Google Scholar 

  81. Yu.A. Orlov, E.I. Schulman, Additional symmetries for integrable equations and conformal algebra representation. Lett. Math. Phys. 12, 171 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  82. Yu.A. Orlov, P. Winternitz, Algebra of pseudodifferential operators and symmetries of equations in the Kadomtsev-Petviashvili hierarchy. J. Math. Phys. 38, 4644 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  83. P. Painlevé, Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme. Acta Math. 25, 1–85 (1902)

    Article  MathSciNet  Google Scholar 

  84. W. Pauli, Uber das wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik. Z. Phys. 36, 336 (1926)

    Article  ADS  Google Scholar 

  85. I. Popper, S. Post, P. Winternitz, Third-order superintegrable systems separable in parabolic coordinates. J. Math. Phys. 53, 062105 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  86. S. Post, P. Winternitz, An infinite family of deformations of the Coulomb potential. J. Phys. A. Math. Gen. 43, 222001 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  87. S. Post, P. Winternitz, A nonseparable quantum superintegrable system in 2D real Euclidean space. J. Phys. A. Math. Theor. 44, 162001 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  88. S. Post, P. Winternitz, General Nth order integrals of motion in the Euclidean plane. J. Phys. A 48, 405201 (2015)

    Article  MathSciNet  Google Scholar 

  89. S. Post, S. Tsujimoto, L. Vinet, Families of superintegrable Hamiltonians constructed from exceptional polynomials. J. Phys. A. Math. Theor. 45, 405202 (2012)

    Article  MathSciNet  Google Scholar 

  90. M.F. Ranada, Higher order superintegrability of separable potentials with a new approach to the Post-Winternitz system. J. Phys. A-Math. Theor. 46, 125206 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  91. D. Riglioni, O. Gingras, P. Winternitz, Superintegrable systems with spin induced by co-algebra symmetry. J. Phys. A Math. Theor. 47, 122002 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  92. M.A. Rodriguez, P. Tempesta, P. Winternitz, Reduction of superintegrable systems: the anisotropic harmonic oscillator. Phys. Rev. E 78, 046608 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  93. M.B. Sheftel, P. Tempesta, P. Winternitz, Recursion operators, higher order symmetries and superintegrability in quantum mechanics. Czech J. Phys. 51, 392–399 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  94. P. Tempesta, A.V. Turbiner, P. Winternitz, Exact solvability of superintegrable systems. J. Math. Phys. 42, 4248–4257 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  95. F. Tremblay, P. Winternitz, Third order superintegrable systems separating in polar coordinates. J. Phys. A. Math. Theor. 43, 175206 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  96. F. Tremblay, A.V. Turbiner, P. Winternitz, An infinite family of solvable and integrable quantum systems on a plane. J. Phys. A. Math. Theor. 42, 242001 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  97. F. Tremblay, A.V. Turbiner, P. Winternitz, Periodic orbits for a family of classical superintegrable systems. J. Phys. A. Math. Theor. 43, 015202 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  98. L. Vinet, A. Zhedanov, A “missing” family of classical orthogonal polynomials. J. Phys. A. Math. Theor. 44, 8, 085201 (2011)

    Google Scholar 

  99. P. Winternitz, Superintegrability with second and third order integrals of motion. Phys. Atom. Nuclei 72, 875–882 (2009)

    Article  ADS  Google Scholar 

  100. P. Winternitz, J. Smorodinsky, M. Uhliř, I. Friš, Symmetry groups in classical and quantum mechanics. Yad. Fiz 4, 625–635 (1966). English translation Sov. J. Nucl. Phys. 4, 444–450 (1967)

    Google Scholar 

Download references

Acknowledgements

The research of I. M. was supported by the Australian Research Council through Discovery Early Career Researcher Award DE130101067 and Australian Research Council Discovery Project DP 160101376. The research of P.W. was partially supported by an NSERC discovery research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Marquette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marquette, I., Winternitz, P. (2019). Higher Order Quantum Superintegrability: A New “Painlevé Conjecture”. In: Kuru, Ş., Negro, J., Nieto, L. (eds) Integrability, Supersymmetry and Coherent States. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-20087-9_4

Download citation

Publish with us

Policies and ethics