Skip to main content

Graph-Based Representations for Supporting Genome Data Analysis and Visualization: Opportunities and Challenges

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11510))

Abstract

Genetics has known an extraordinary development in the last years, with a reduction of several orders of magnitude in the costs and the times required to obtain the sequence of nucleotides corresponding to a whole genome, leading to the availability of huge amounts of genomic data. While these data are essentially very long strings, several graph-based representations have been introduced to perform efficiently some operations on a single genome or on a set of related genomes. In this paper we will review the most important types of genetic graphs, together with the algorithmic challenges and open issues related to their use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Computational pan-genomics: status, promises and challenges. Briefings Bioinform. 19(1), 118–135 (2016)

    Google Scholar 

  2. Blazewicz, J., et al.: Graph algorithms for DNA sequencing-origins, current models and the future. Eur. J. Oper. Res. 264(3), 799–812 (2018)

    Article  MathSciNet  Google Scholar 

  3. Eggertsson, H.P., et al.: Graphtyper enables population-scale genotyping using pangenome graphs. Nat. Genet. 49(11), 1654–1660 (2017)

    Article  Google Scholar 

  4. Fostier, J., et al.: A greedy, graph-based algorithm for the alignment of multiple homologous gene lists. Bioinformatics 27(6), 749–756 (2011). https://doi.org/10.1093/bioinformatics/btr008

    Article  Google Scholar 

  5. Garrison, E., et al.: Sequence variation aware genome references and read mapping with the variation graph toolkit. bioRxiv, p. 234856 (2017)

    Google Scholar 

  6. Kececioglu, J.D., Myers, E.W.: Combinatorial algorithms for DNA sequence assembly. Algorithmica 13, 7–51 (1995)

    Article  MathSciNet  Google Scholar 

  7. Limasset, A., Cazaux, B., Rivals, E., Peterlongo, P.: Read mapping on DeBruijn graphs. BMC Bioinform. 17(1), 237 (2016). https://doi.org/10.1186/s12859-016-1103-9

    Article  Google Scholar 

  8. Liu, B., Guo, H., Brudno, M., Wang, Y.: Debga: read alignment with De Bruijn graph-based seed and extension. Bioinformatics 32(21), 3224–3232 (2016)

    Article  Google Scholar 

  9. Maciuca, S., del Ojo Elias, C., McVean, G., Iqbal, Z.: A natural encoding of genetic variation in a burrows-wheeler transform to enable mapping and genome inference. In: Frith, M., Storm Pedersen, C.N. (eds.) WABI 2016. LNCS, vol. 9838, pp. 222–233. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43681-4_18

    Chapter  Google Scholar 

  10. Mokveld, T.O., Linthorst, J., Al-Ars, Z., Reinders, M.: Chop: haplotype-aware path indexing in population graphs. bioRxiv p. 305268 (2018)

    Google Scholar 

  11. Myers, E.W.: The fragment assembly string graph. Bioinformatics 21(suppl. 2), ii79–ii85 (2005)

    Google Scholar 

  12. Paten, B., et al.: Cactus graphs for genome comparisons. J. Comput. Biol. 18(3), 468–481 (2011)

    Article  MathSciNet  Google Scholar 

  13. Paten, B., Novak, A.M., Eizenga, J.M., Garrison, E.: Genome graphs and the evolution of genome inference. Genome Res. 27(5), 665–676 (2017)

    Article  Google Scholar 

  14. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. In: Proceedings of the National Academy of Sciences, vol. 98, pp. 9748–9753 (2001)

    Google Scholar 

  15. Rausch, T., Emde, A.K., Weese, D., Döring, A., Notredame, C., Reinert, K.: Segment-based multiple sequence alignment. Bioinformatics 24(16), i187–i192 (2008)

    Article  Google Scholar 

  16. Schneeberger, K., et al.: Simultaneous alignment of short reads against multiple genomes. Genome Biol. 10(9), R98 (2009)

    Article  Google Scholar 

  17. Siva, N.: 1000 genomes project (2008)

    Google Scholar 

  18. Wajid, B., Serpedin, E.: Review of general algorithmic features for genome assemblers for next generation sequencers. Genomics, Proteomics Bioinform. 10(2), 58–73 (2012)

    Article  Google Scholar 

  19. Zerbino, D., Birney, E.: Velvet: algorithms for de novo short read assembly using De Bruijn graphs. Genome Res. 18(5), 821–829 (2008). gr-074492

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Foggia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carletti, V., Foggia, P., Garrison, E., Greco, L., Ritrovato, P., Vento, M. (2019). Graph-Based Representations for Supporting Genome Data Analysis and Visualization: Opportunities and Challenges. In: Conte, D., Ramel, JY., Foggia, P. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2019. Lecture Notes in Computer Science(), vol 11510. Springer, Cham. https://doi.org/10.1007/978-3-030-20081-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20081-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20080-0

  • Online ISBN: 978-3-030-20081-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics