Skip to main content

Network Embedding by Walking on the Line Graph

  • Conference paper
  • First Online:
  • 819 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11510))

Abstract

In this paper, we propose to embed edges instead of nodes using state-of-the-art neural/factorization methods (DeepWalk, node2vec). These methods produce latent representations based on co-ocurrence statistics by simulating fixed-length random walks and then taking bags-of-vectors as the input to the Skip Gram Learning with Negative Sampling (SGNS). We commence by expressing commute times embedding as matrix factorization, and thus relating this embedding to those of DeepWalk and node2vec. Recent results showing formal links between all these methods via the spectrum of graph Laplacian, are then extended to understand the results obtained by SGNS when we embed edges instead of nodes. Since embedding edges is equivalent to embedding nodes in the line graph, we proceed to combine both existing formal characterizations of the line graphs and empirical evidence in order to explain why this embedding dramatically outperforms its nodal counterpart in multi-label classification tasks.

M. A. Lozano, M. Curado and F. Escolano are funded by the project TIN2015-69077-P of the Spanish Government.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/thunlp/MMDW/.

  2. 2.

    https://downloads.thebiogrid.org/BioGRID.

  3. 3.

    https://snap.stanford.edu/node2vec/.

  4. 4.

    https://linqs.soe.ucsc.edu/data.

  5. 5.

    https://github.com/thunlp/OpenNE.

References

  1. Benson, A.R., Gleich, D.F., Lim, L.: The spacey random walk: a stochastic process for higher-order data. SIAM Rev. 59(2), 321–345 (2017). https://doi.org/10.1137/16M1074023

    Article  MathSciNet  MATH  Google Scholar 

  2. Breitkreutz, B., et al.: The biogrid interaction database: 2008 update. Nucleic Acids Res. 36, 637–640 (2008). https://doi.org/10.1093/nar/gkm1001

    Article  Google Scholar 

  3. Chung, F.R.K.: Spectral graph theory. In: Conference Board of the Mathematical Sciences (CBMS), number 92. American Mathematical Society (1997)

    Google Scholar 

  4. Curado, M., Escolano, F., Lozano, M.A., Hancock, E.R.: Dirichlet densifiers: beyond constraining the spectral gap. In: Bai, X., Hancock, E., Ho, T., Wilson, R., Biggio, B., Robles-Kelly, A. (eds.) S+SSPR 2018. LNCS, vol. 11004, pp. 512–521. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97785-0_49

    Chapter  Google Scholar 

  5. Escolano, F., Curado, M., Lozano, M.A., Hancook, E.R.: Dirichlet graph densifiers. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 185–195. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49055-7_17

    Chapter  Google Scholar 

  6. Evans, T.S., Lambiotte, R.: Line graphs, link partitions, and overlapping communities. Phys. Rev. E 80, 016105 (2009). https://doi.org/10.1103/PhysRevE.80.016105

    Article  Google Scholar 

  7. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13–17 August 2016, pp. 855–864 (2016). https://doi.org/10.1145/2939672.2939754

  8. Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data

  9. Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization. In: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems, 8–13 December 2014, Montreal, pp. 2177–2185 (2014). http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization

  10. Lovász, L.: Random walks on graphs: a survey. In: Miklós, D., Sós, V.T., Szőnyi, T. (eds.) Combinatorics, Paul Erdős is Eighty, vol. 2, pp. 353–398. János Bolyai Mathematical Society, Budapest (1996)

    Google Scholar 

  11. von Luxburg, U., Radl, A., Hein, M.: Hitting and commute times in large random neighborhood graphs. J. Mach. Learn. Res. 15(1), 1751–1798 (2014). http://dl.acm.org/citation.cfm?id=2638591

    MathSciNet  MATH  Google Scholar 

  12. Mahoney, M.: Large text compression benchmark (2011). http://www.mattmahoney.net/dc/textdata

  13. McAuley, J.J., Leskovec, J.: Learning to discover social circles in ego networks. In: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems, Proceedings of a Meeting Held 3–6 December 2012, Lake Tahoe, pp. 548–556 (2012). http://papers.nips.cc/paper/4532-learning-to-discover-social-circles-in-ego-networks

  14. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, New York, 24–27 August 2014, pp. 701–710 (2014). https://doi.org/10.1145/2623330.2623732

  15. Qiu, H., Hancock, E.R.: Clustering and embedding using commute times. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1873–1890 (2007). https://doi.org/10.1109/TPAMI.2007.1103

    Article  Google Scholar 

  16. Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.: Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, pp. 459–467. ACM, New York (2018). https://doi.org/10.1145/3159652.3159706

  17. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–106 (2008). http://www.aaai.org/ojs/index.php/aimagazine/article/view/2157

    Article  Google Scholar 

  18. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, WWW 2015, Florence, 18–22 May 2015, pp. 1067–1077 (2015). https://doi.org/10.1145/2736277.2741093

  19. Yan, C.: Properties of spectra of graphs and line graphs. Appl. Math. J. Chin. Univ. 17(3), 371–376 (2002). https://doi.org/10.1007/s11766-002-0017-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Escolano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lozano, M.A., Curado, M., Escolano, F., Hancock, E.R. (2019). Network Embedding by Walking on the Line Graph. In: Conte, D., Ramel, JY., Foggia, P. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2019. Lecture Notes in Computer Science(), vol 11510. Springer, Cham. https://doi.org/10.1007/978-3-030-20081-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20081-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20080-0

  • Online ISBN: 978-3-030-20081-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics