Skip to main content

A Parallel MCMC Algorithm for the Balanced Graph Coloring Problem

  • Conference paper
  • First Online:
Graph-Based Representations in Pattern Recognition (GbRPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11510))

  • 818 Accesses

Abstract

In parallel computation domain, graph coloring is widely studied in its own and represents a reference problem for scheduling of parallel tasks. Unfortunately, common graph coloring strategies usually focus on minimizing the number of colors without any concern for the sizes of each color class, thus producing highly skewed color class distributions. However, to guarantee efficiency in parallel computations, but also in other application contexts, it is important to keep the color classes highly balanced in their sizes. In this paper we address this challenging issue for large scale graphs, proposing a fast parallel MCMC heuristic for sparse graphs that randomly generates good balanced colorings provided that a sufficient number of colors are made available. We show its effectiveness through some numerical simulations on random graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boman, E.G., Bozdağ, D., Catalyurek, U., Gebremedhin, A.H., Manne, F.: A scalable parallel graph coloring algorithm for distributed memory computers. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 241–251. Springer, Heidelberg (2005). https://doi.org/10.1007/11549468_29

    Chapter  Google Scholar 

  2. Coleman, T.F., Moré, J.J.: Estimation of sparse Jacobian matrices and graph coloring problems. SIAM J. Numer. Anal. 20(1), 187–209 (1983)

    Article  MathSciNet  Google Scholar 

  3. Comi, P., et al.: Hardware-accelerated high-resolution video coding in virtual network functions. In: European Conference on Networks and Communications (EuCNC), pp. 32–36 (2016)

    Google Scholar 

  4. Cuculo, V., Lanzarotti, R., Boccignone, G.: Using sparse coding for landmark localization in facial expressions. In: 5th European Workshop on Visual Information Processing, EUVIP 2014, pp. 1–6. IEEE (2014)

    Google Scholar 

  5. Erdős, P., Rènyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  6. Fakhraei, S., Foulds, J., Shashanka, M., Getoor, L.: Collective spammer detection in evolving multi-relational social networks. In: Proceedings of 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1769–1778. ACM (2015)

    Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    MATH  Google Scholar 

  8. Gjertsen, R.K., Jones, M.T., Plassmann, P.E.: Parallel heuristics for improved, balanced graph colorings. J. Parallel Distrib. Comput. 37, 171–186 (1996)

    Article  Google Scholar 

  9. Gómez, D., Montero, J., Yáñez, J.: A coloring fuzzy graph approach for image classification. Inf. Sci. 176(24), 3645–3657 (2006)

    Article  Google Scholar 

  10. Hastings, W.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  Google Scholar 

  11. Janis, P., et al.: Device-to-device communication underlaying cellular communications systems. Int. J. Commun. Netw. Syst. Sci. 2(3), 169–178 (2009). ISSN 1913-3715

    Google Scholar 

  12. Jerrum, M.R.: A very simple algorithm for estimating the number of \(k\)-colourings of a low-degree graph. Random Struct. Algorithms 7, 157–165 (1995)

    Google Scholar 

  13. Jones, M.T., Plassmann, P.E.: A parallel graph coloring heuristic. SIAM J. Sci. Comput. 14, 654–669 (1992)

    Article  MathSciNet  Google Scholar 

  14. Lu, H., Halappanavar, M., Chavarria-Miranda, D., Gebremedhin, A., Kalyanaraman, A.: Balanced coloring for parallel computing applications. In: Proceedings of the IEEE 29th International Parallel and Distributed Processing Symposium, pp. 7–16 (2015)

    Google Scholar 

  15. Luby, M.: A simple parallel algorithm for the maximal independent set problem. In: Proceedings of the 17th Annual ACM Symposium on Theory of Computing, pp. 1–10 (1985)

    Google Scholar 

  16. Lupaşcu, C.A., Tegolo, D., Bellavia, F., Valenti, C.: Semi-automatic registration of retinal images based on line matching approach. In: Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, pp. 453–456. IEEE (2013)

    Google Scholar 

  17. Meer, P.: Stochastic image pyramids. CVGIP 45(3), 269–294 (1989)

    Google Scholar 

  18. Meyer, W.: Equitable coloring. Am. Math. Mon. 80, 920–922 (1973)

    Article  MathSciNet  Google Scholar 

  19. Mosa, M.A., Hamouda, A., Marei, M.: Graph coloring and aco based summarization for social networks. Expert. Syst. Appl. 74, 115–126 (2017)

    Article  Google Scholar 

  20. Robert, J., Gjertsen, K., Jones, M.T., Plassmann, P.: Parallel heuristics for improved, balanced graph colorings. J. Parallel Distrib. Comput. 37, 171–186 (1996)

    Article  Google Scholar 

  21. Tantipathananandh, C., Berger-Wolf, T., Kempe, D.: A framework for community identification in dynamic social networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 717–726. ACM (2007)

    Google Scholar 

  22. Tsolkas, D., Liotou, E., Passas, N., Merakos, L.: A graph-coloring secondary resource allocation for D2D communications in LTE networks. In: IEEE 17th International Workshop on Computer Aided Modeling and Design (CAMAD), pp. 56–60. IEEE (2012)

    Google Scholar 

  23. Voss, J.: An Introduction to Statistical Computing: A Simulation-based Approach. Wiley, Chichester (2013)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyi Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Conte, D., Grossi, G., Lanzarotti, R., Lin, J., Petrini, A. (2019). A Parallel MCMC Algorithm for the Balanced Graph Coloring Problem. In: Conte, D., Ramel, JY., Foggia, P. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2019. Lecture Notes in Computer Science(), vol 11510. Springer, Cham. https://doi.org/10.1007/978-3-030-20081-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20081-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20080-0

  • Online ISBN: 978-3-030-20081-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics