Skip to main content

Thermoelectric Oxide Thin Films with Hopping Transport

  • Chapter
  • First Online:
Thermoelectric Thin Films
  • 770 Accesses

Abstract

In this chapter, we firstly show the interest of thermoelectric oxide thin films with hopping transport in terms of thermoelectric properties. Thermoelectric and electrical properties of hopping oxides will be presented with some examples of oxide materials and we will discuss about the interest of the development of thermoelectric thin films, more specifically in the case of hopping oxide semiconductor thin films. A second part devoted to make accurate measurements of the Seebeck coefficient of the thermoelectric thin films will then be showed. Then, we will expose in a last part the transport properties of one hopping oxide semiconductor deposited with the Mg doped CuCrO2 compound. A description of the optimization of the annealing temperature and the film thickness will be made in the aim to optimize the transport properties. At the end, we will expose the case of a three-strip Mg doped CuCrO2 thermoelectric thin film module which generates a power of 11 nW with a thermal gradient of 225 °C and we will discuss about their possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Wunderlich, Y. Suzuki, N. Gibo, T. Ohkuma, M. Al-Abandi, M. Sato, A.U. Khan, T. Mori, Thermoelectric properties of Mg2Si produced by new chemical route and SPS. Inorganics 2(2), 351–362 (2014)

    Article  CAS  Google Scholar 

  2. D. Berthebaud, F. Gascoin, Microwaved assisted fast synthesis of n and p-doped Mg2Si. J. Solid State Chem. 202, 61 (2013)

    Article  CAS  Google Scholar 

  3. M.I. Fedorov, G.N. Isachenko, Silicides: materials for thermoelectric energy conversion. Jpn. J. Appl. Phys. 54, 7S2 (2015)

    Article  Google Scholar 

  4. J.P. Fleurial, A. Borshchevsky, M.A. Ryan, W.M. Phillips, J.G. Snyder, T. Caillat, E.A. Kolawa, J.A. Herman, P. Mueller, M. Nicolet, Development of thick-film thermoelectric microcoolers using electrochemical deposition, https://ntrs.nasa.gov/search.jsp?R=200000488092018-09-12T12:50:14+00:00Z

  5. J.H. Kim, J.Y. Choi, J.M. Bae, M.Y. Kim, T.S. Oh, Thermoelectric characteristics of n-type Bi2Te3 and p-type Sb2Te3, thin films prepared by co-evaporation and annealing for thermopile sensor applications. Mater. Trans. 54(4), 618–625 (2013)

    Article  CAS  Google Scholar 

  6. G. Rogl, P. Rogl, Skutterudites, a most promising group of thermoelectric materials. Curr. Opin. Green Sustain. Chem 4, 50–57 (2017). https://doi.org/10.1016/j.cogsc.2017.02.006

    Article  Google Scholar 

  7. J.Q. Guo, H.Y. Geng, T. Ochi, S. Suzuki, M. Kikuchi, Y. Yamaguchi, S. Ito, Development of skutterudite thermoelectric materials and modules. J. Electron. Mater. 41(6), 1036–1042 (2012)

    Article  CAS  Google Scholar 

  8. S.M. Kauzlarich, S.R. Browna, G. Jeffrey Snyder, Zintl phases for thermoelectric devices. Dalton Trans. 21, 2099 (2007)

    Article  Google Scholar 

  9. S. Chen, Z. Ren, Recent progress of half-Heusler for moderate temperature thermoelectric applications. Mater. Today 16(10), 387–395 (2013)

    Article  CAS  Google Scholar 

  10. J. Yu, K. Xia, X. Zhao, T. Zhu, High performance p-type half-Heusler thermoelectric materials. J. Phys. D. Appl. Phys. 51, 113001 (2018)

    Article  Google Scholar 

  11. R. Ismail, O. Abdulrazzaq, Z.K. Yahya, Preparation and characterization of In2O3 thin films for optoelectronic applications. Surf. Rev. Lett. 12(04), 515–518 (2005). https://doi.org/10.1142/s0218625x05007359

    Article  CAS  Google Scholar 

  12. S. Agrawal, R. Rane, S. Mukherjee, in ZnO Thin Film Deposition for TCO Application in Solar Cell. Conference: International Conference on Solar Energy & Photovoltaics (2012)

    Google Scholar 

  13. Y.M. Evtushenko, S.V. Romashkin, N.S. Trofimov, T.K. Chekhlova, Optical properties of TiO2 thin films. Phys. Procedia 73, 100–107 (2015)

    Article  CAS  Google Scholar 

  14. G. Deutscher, K.A. Müller, Phys. Rev. Lett. 59, 1745 (1987)

    Article  CAS  Google Scholar 

  15. T. Sakudo, H. Unoki, Dielectric properties of SrTiO3 at low temperatures. Phys. Rev. Lett 26(18), 1147–1147 (1971)

    Article  Google Scholar 

  16. M.N. Kamalasanan, N.D. Kumar, S. Chandra, Dielectric and ferroelectric properties of BaTiO3 thin films grown by the sol-gel process. J. Appl. Phys. 74, 5679 (1993)

    Article  CAS  Google Scholar 

  17. H. Han, C. Voisin, S. Guillemet-Fritsch, P. Dufour, C. Tenailleau, C. Turner, J.-C. Nino, Origin of colossal permittivity in BaTiO3 via broadband dielectric spectroscopy. J. Appl. Phys 113(2), 024102 (2013). https://doi.org/10.1063/1.4774099

    Article  CAS  Google Scholar 

  18. R. Legros, R. Metz, A. Rousset, Structural properties of nickel manganite NiMn3-xO4 with 0.5 <x <1. J. Mater. Sci. 25, 4410–4414 (1990)

    Article  CAS  Google Scholar 

  19. I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaxCo2O4 single crystals. Phys. Rev. B 56, 12685–12687 (1997)

    Article  Google Scholar 

  20. F. Chen, L. Stokes, R. Funahashi, Appl. Phys. Lett. 81, 1459 (2002)

    Article  Google Scholar 

  21. D.G. Cahill, H.E. Fischer, T. Klitsner, E.T. Swartz, R.O. Pohl, Thermal conductivity of thin films: measurements and understanding. J. Vac. Sci. Technol. A 7, 1259 (1989)

    Article  CAS  Google Scholar 

  22. J. Loureiro, J.R. Santos, A. Nogueira, F. Wyczisk, L. Divay, S. Reparaz, F. Alzina, C.M. Sotomayor Torres, J. Cuffe, F. Montemor, R. Martins, I. Ferreira, Nanostructured p-type Cr/V2O5 thin films with boosted thermoelectric properties. J. Mater. Chem. A 2, 6456 (2014)

    Article  CAS  Google Scholar 

  23. R. Venkatasubramanian, E. Siivola, B. O’Quinn, K. Coonley, T. Colpitts, P. Addepalli, M. Napier, M. Mantini, Nanostructured superlattice thin-film thermoelectric devices, in Nanotechnology and the Environment, (American Chemical Society, Washington, 2004), pp. 347–352

    Chapter  Google Scholar 

  24. K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, R. Funahashi, Oxide thermoelectric materials: a nanostructuring approach. Annu. Rev. Mater. Res. 40, 363–394 (2010)

    Article  CAS  Google Scholar 

  25. N.F. Mott, Conduction in non-crystalline materials. Philos. Mag. 19(160), 835–852 (1969)

    Article  CAS  Google Scholar 

  26. B. Giuot, R. Legros, R. Metz, A. Rousset, Electrical conductivity of copper and nickel manganites in relation with the simultaneous presence of Mn3+ and Mn4+ ions on octahedral sites of the spinel structure. Solid State Ionics 51, 7–9 (1992)

    Article  Google Scholar 

  27. I. Sinnarasa, Y. Thimont, L. Presmanes, A. Barnabé, P. Tailhades, Thermoelectric and transport properties of Delafossite CuCrO2: Mg thin films prepared by RF magnetron sputtering. Nanomaterials 7, 157 (2017). https://doi.org/10.3390/nano7070157

    Article  CAS  Google Scholar 

  28. A.M. Nardes, M. Kemerink, R.A.J. Janssen, Anisotropic hopping conduction in spin-coated PEDOTT: PSS thin films. Phys. Rev. B 76, 085208 (2007). https://doi.org/10.1103/PhysRevB.76.085208

    Article  CAS  Google Scholar 

  29. Z.M. Gibbs, H.S. Kim, H. Wang, G. Jeffrey Snyder, Appl. Phys. Lett. 106, 022112 (2015)

    Article  Google Scholar 

  30. W. Kobayashi, I. Terasaki, M. Mikami, R. Funahashi, Negative thermoelectric power induced by positive carriers in CaMn3-xCuxMn4O12. J. Phys. Soc. Jpn. 73(3), 523–525 (2004)

    Article  CAS  Google Scholar 

  31. T. Tanaka, S. Nakamura, S. Lida, Observation of distinct metallic conductivity in NaCo2O4. Jpn. J. Appl. Phys. 33, L581–L582 (1994)

    Article  CAS  Google Scholar 

  32. T.D. Sparks, Dissertation, Harvard University Cambridge, Massachusetts, 2012

    Google Scholar 

  33. S. Lee, K. Hippalgaonkar, F. Yang, J. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J.-J. Urban, X. Zhang, C. Dames, S.-A. Hartnoll, O. Delaire, J. Wu, Anomalously low electronic thermal conductivity in metallic vanadium dioxide. Science 355(6323), 371–374 (2017)

    Article  CAS  Google Scholar 

  34. J.A. Thornton, High rate thick film growth. Annu. Rev. Mater. Sci. 7(1), 239–260 (1977)

    Article  CAS  Google Scholar 

  35. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, T. Caillat, Recent developments in thermoelectric materials. Int. Mater. Rev. 48(1), 45 (2003)

    Article  CAS  Google Scholar 

  36. T.M.C. Dinh, A. Barnabe, M.A. Bui, C. Josse, T. Hungria, C. Bonningue, L. Presmanes, P. Tailhades, FIB plan view lift-out sample preparation for TEM characterization of periodic nanostructures obtained by spinodal decomposition in Co1.7Fe1.3O4 thin films. CrystEngComm 20, 6146 (2018). https://doi.org/10.1039/c8ce01186a

    Article  CAS  Google Scholar 

  37. P. Fan, Z.H. Zheng, Z.K. Cai, T.B. Chen, P.J. Liu, X.M. Cai, D.P. Zhang, G.X. Liang, J.T. Luo, The high performance of a thin film thermoelectric generator with heat flow running parallel to film surface. Appl. Phys. Lett. 102, 033904 (2013)

    Article  Google Scholar 

  38. D. Zappa, S. Dalola, G. Faglia, E. Comini, M. Ferroni, C. Soldano, V. Ferrari, G. Sbervegleri, Intergration of ZnO and CuO nanowires into a thermoelectric module. Beilstein J. Nanotechnol. 5, 927–936 (2014)

    Article  Google Scholar 

  39. A. Pérez-Rivero, M. Cabero, M. Varela, R. Ramírez-Jiménez, F.J. Mompean, J. Santamaría, J.L. Martínez, C. Prieto, Thermoelectric functionality of Ca3Co4O9 epitaxial thin films on yttria-stabilized zirconia crystalline substrate. J. Alloys Compd. 710, 151–158 (2017)

    Article  Google Scholar 

  40. I. Sinnarasa, Y. Thimont, L. Presmanes, A. Barnabe, P. Tailhades, Determination of modified ZT validity for thermoelectric thin films with heat transfer model: case of CuCrO2:Mg deposited on fused silica. J. Appl. Phys 124, 165306 (2018)

    Article  Google Scholar 

  41. F.M. Smits, Measurement of sheet resistivities with the four-point probe. Bell Syst. Tech. J. 37(3), 711–718 (1958)

    Article  Google Scholar 

  42. J.H. Bahk, T. Favaloro, A. Shakouri, Thin film thermoelectric characterization techniques, in Annual Review of Heat Transfer, ed. by G. Chen et al., vol. 16, (Begell House Inc., New York, 2013)

    Google Scholar 

  43. C.T. Prewitt, R.D. Shannon, D.B. Rogers, Chemistry of noble metal oxides: II. Crystal structures of PtCoO2, PdCoO2, CuFeO2 and AgFeO2. Inorg. Chem 10, 719–723 (1971)

    Article  Google Scholar 

  44. T. Nozaki, K. Hayashi, T. Kajitani, Electronic structure and thermoelectric properties of the Delafossite type oxides CuFe1-xNixO2. J. Electron. Mater. 38(7), 1282–1286 (2009)

    Article  CAS  Google Scholar 

  45. A.P. Amrute, G.O. Larrazabal, C. Mondelli, J. Pérez-Ramirez, CuCrO2, Delafossite: a stable copper catalyst for chlorine. Angew. Chem. Int. Ed. 52(37), 9772–9775 (2013). https://doi.org/10.1002/anie.201304254

    Article  CAS  Google Scholar 

  46. C. Ruttanapun, S. Maensiri, Effects of spin entropy and lattice strain from mixed-trivalent Fe3+/Cr3+ on the electronic, thermoelectric and optical properties of delafossite CuFe1−xCrxO2 (x = 0.25, 0.5, 0.75). J. Phys. D. Appl. Phys 48, 495103 (2015). https://doi.org/10.1088/0022-3727/48/49/495103

    Article  CAS  Google Scholar 

  47. E. Guilmeau, M. Poienar, S. Kremer, S. Marinel, S. Hébert, R. Frésard, A. Maignan, Mg substitution in CuCrO2 delafossite compound. Solid State Commun. 151(23), 1798–1801 (2011)

    Article  CAS  Google Scholar 

  48. W. Koshibae, K. Tsutsui, S. Maekawa, Thermopower in cobalt oxides. Phys. Rev. B 62(11), 6869–6872 (2000)

    Article  CAS  Google Scholar 

  49. A. Maignan, C. Martin, R. Frésard, V. Eyert, E. Guilmeau, S. Hébert, M. Poienar, D. Pelloquin, On the strong impact of doping in the triangular antiferromagnet CuCrO2. Solid State Commun. 149, 962–967 (2009)

    Article  CAS  Google Scholar 

  50. A.J. Bosman, H.J. Van Daal, Small polaron versus band conduction in some transition-metal oxides. Adv. Phys. 19(77), 1–117 (1970)

    Article  CAS  Google Scholar 

  51. S. Saini, P. Mele, K. Miyazaki, A. Tiwari, On-chip thermoelectric module comprised of oxide thin film legs. Energy Convers. Manag. 114, 251–257 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author would like to thank Dr. C. Tenailleau for his contribution in the editing of the document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohann Thimont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thimont, Y. (2019). Thermoelectric Oxide Thin Films with Hopping Transport. In: Mele, P., et al. Thermoelectric Thin Films. Springer, Cham. https://doi.org/10.1007/978-3-030-20043-5_9

Download citation

Publish with us

Policies and ethics