Skip to main content

Thermoelectric Modules Based on Oxide Thin Films

  • Chapter
  • First Online:
Thermoelectric Thin Films

Abstract

Oxides are known as stable, inexpensive, and sustainable thermoelectric (TE) materials. Thermoelectric modules based on bulk oxides legs have been proposed in past years. However, main obstacles to the practical diffusion of such kind of heat harvesters are their low conversion efficiency and mechanical rigidity. Use of nanostructured oxide thin films is expected to overcome both drawbacks. This chapter reviews the recent progress on the fabrication of tiny modules based on oxide thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BP Statistical Review of World Energy (2019); url (consulted 17 06 2019), https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf

  2. T. Seebeck, Ann. Phys. 82, 133 (1821)

    Article  Google Scholar 

  3. P. Mele et al., Metals Mater. Int. 20, 389S (2014)

    Article  Google Scholar 

  4. S. Saini, P. Mele, et al., Energy Conv. Manag. 114, 251 (2016)

    Article  CAS  Google Scholar 

  5. P. Mele, S. Saini, H. Honda, et al., Appl. Phys. Lett. 253903, 102 (2013)

    Google Scholar 

  6. J.W. Fergus, J. Eur. Ceram. Soc. 32, 525 (2012)

    Article  CAS  Google Scholar 

  7. Nanostructured Oxide thermoelectric Materials with Enhanced Phonon Scattering, ed. by M. Ohtaki. Chapter 8 in Oxide Thin Films, Multilayers and Nanocomposites (Springer, Berlin, 2015). https://doi.org/10.1007/978-3-319-14478-8

    Google Scholar 

  8. M. Ohtaki et al., J. Electron. Mater. 38, 1234 (2009)

    Article  CAS  Google Scholar 

  9. S. Saini et al., Sci. Rep. 7, 44621 (2017)

    Article  CAS  Google Scholar 

  10. Nanostructured thin films of thermoelectric oxides, ed. by P. Mele, Chapter 8 in Oxide Thin Films, Multilayers and Nanocomposites (Springer, Berlin, 2015). https://doi.org/10.1007/978-3-319-14478-8

    Google Scholar 

  11. S. Saini, P. Mele, et al., Jpn. J. Appl. Phys. 53, 060306 (2014)

    Article  Google Scholar 

  12. P. Mele et al., Supercond. Sci. Technol. 20, 616 (2007)

    Article  CAS  Google Scholar 

  13. M. Miura, B. Maiorov, P. Mele, et al., NPG Asia Mater. (2017). https://doi.org/10.1038/am.2017.197

    Article  CAS  Google Scholar 

  14. T. Tynell, P. Mele, M. Karppinen, et al., J. Mater. Chem. A 2, 12150 (2014)

    Article  CAS  Google Scholar 

  15. A. Darwish, P. Mele et al., chapter 10 in Laser Ablation - From Fundamentals to Applications “INTECH 2018”

    Google Scholar 

  16. S. Saini, P. Mele, T. Oyake, J. Shiomi, J.-P. Niemela, M. Karppinen, K. Miyazaki, C. Li, T. Kawaharamura, A. Ichinose, L. Molina-Luna, Thin Solid Films 685, 180 (2019). https://doi.org/10.1016/j.tsf.2019.06.010

    Article  CAS  Google Scholar 

  17. P. Mele, S. Saini, M.I. Adam, S.J. Singh, et al., in preparation

    Google Scholar 

  18. W. Somkhunthot, N. Pimpabute, T. Seetawan, Adv. Mater. Res. 622(623), 726 (2013)

    Google Scholar 

  19. W. Somkhunthot, N. Pimpabute, A. Vora-ud, T. Seetawan, T. Burinprakhon, Energy Procedia 61, 795 (2014)

    Article  CAS  Google Scholar 

  20. W. Somkhunthot, N. Pimpabute, A. Vora-ud, T. Seetawan, T. Burinprakhon Adv, Mater. Res. 931-932, 386 (2014)

    Google Scholar 

  21. D. Zappa, S. Dalola, G. Faglia, E. Comini, M. Ferroni, C. Soldano, V. Ferrari, G. Sberveglieri, Beilstein J. Nanotechnol. 5, 927 (2014)

    Article  Google Scholar 

  22. B. Xu, C. Lia, M. Myronov, K. Fobelets, Solid State Electron. 83, 107 (2013)

    Article  CAS  Google Scholar 

  23. S. Saini, P. Mele, K. Miyazaki, A. Tiwari, Energ. Conv. Manag 114, 251 (2016)

    Article  CAS  Google Scholar 

  24. E.A. Mondarte, V. Copa, A. Tuico, C.J. Vergara, E. Estacio, A. Salvador, A. Somintac, Mat. Sci. Semicond. Proc. 45, 27 (2016)

    Article  CAS  Google Scholar 

  25. N.-W. Park, J.-Y. Ahn, T.-H. Park, J.-H. Lee, W.-Y. Lee, K. Cho, Y.-G. Yoon, C.-J. Choi, J.-S. Park, S.-K. Lee, Nanoscale 9, 7027 (2017)

    Article  CAS  Google Scholar 

  26. R. Rudež, P. Markowski, M. Presečnik, M. Košir, A. Dziedzic, S. Bernik, Ceram. Int. 41, 13201 (2015)

    Article  Google Scholar 

  27. I. Sinnarasa, Y. Thimont, L. Presmanes, A. Barnabé, P. Tailhades, J. Appl. Phys. 124, 165306 (2018)

    Article  Google Scholar 

  28. L. Francioso, C. De Pascali, I. Farella, C. Martucci, P. Cretì, P. Siciliano, A. Perrone, J. Power Sources 196, 3239 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Mele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mele, P., Saini, S., Magnone, E. (2019). Thermoelectric Modules Based on Oxide Thin Films. In: Mele, P., et al. Thermoelectric Thin Films. Springer, Cham. https://doi.org/10.1007/978-3-030-20043-5_7

Download citation

Publish with us

Policies and ethics