Skip to main content

Electric Field Thermopower Modulation of 2D Electron Systems

  • Chapter
  • First Online:
Thermoelectric Thin Films

Abstract

Thermopower (≡Seebeck coefficient, S) is known as not only an important physical property for thermoelectric energy conversion but also useful to understand electronic structures of materials since |S| strongly depends on the energy derivative of the electronic density of states (DOS) at around the Fermi energy. In case of bulk system, the slope of log n 3D vs. S relation should be –ln 10∙k Be −1 (≡ −198 μV K−1 decade−1) since parabolic-shaped Ek relation at around the conduction band minimum is generally observed. Furthermore, an enhanced S can be observed by modifying the DOS in low-dimensional structures such as two-dimensional electron system (2DES). The electric field thermopower modulation measurement is a powerful technique to clarify the effective thickness and the electronic structure of the 2DES. Here I review the electric field modulated S of 2DESs confined in the several transistors including SrTiO3, BaSnO3, and AlGaN/GaN heterointerfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.J. DiSalvo, Thermoelectric cooling and power generation. Science 285(5428), 703–706 (1999)

    Article  CAS  Google Scholar 

  2. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008)

    Article  CAS  Google Scholar 

  3. T.J. Seebeck, Abh. K. Akad. Wiss. 265, 1822 (1823)

    Google Scholar 

  4. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303(5659), 818–821 (2004)

    Article  CAS  Google Scholar 

  5. K. Biswas, J.Q. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489(7416), 414–418 (2012)

    Article  CAS  Google Scholar 

  6. L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496), 373 (2014)

    Article  CAS  Google Scholar 

  7. L.D. Zhao, G.J. Tan, S.Q. Hao, J.Q. He, Y.L. Pei, H. Chi, H. Wang, S.K. Gong, H.B. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, M.G. Kanatzidis, Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 351(6269), 141–144 (2016)

    Article  CAS  Google Scholar 

  8. S. Il Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, S.W. Kim, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348(6230), 109–114 (2015)

    Article  Google Scholar 

  9. L.D. Hicks, T.C. Harman, X. Sun, M.S. Dresselhaus, Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 53(16), 10493–10496 (1996)

    Article  Google Scholar 

  10. L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47(19), 12727–12731 (1993)

    Article  CAS  Google Scholar 

  11. N.T. Hung, E.H. Hasdeo, A.R.T. Nugraha, M.S. Dresselhaus, R. Saito, Quantum effects in the thermoelectric power factor of low-dimensional semiconductors. Phys. Rev. Lett. 117(3), 036602 (2016)

    Article  Google Scholar 

  12. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19(8), 1043–1053 (2007)

    Article  CAS  Google Scholar 

  13. Y.Q. Zhang, B. Feng, H. Hayashi, C.P. Chang, Y.M. Sheu, I. Tanaka, Y. Ikuhara, H. Ohta, Double thermoelectric power factor of a 2D electron system. Nat. Commun. 9, 2224 (2018)

    Article  Google Scholar 

  14. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, Giant thermoelectric Seebeck coefficient of two-dimensional electron gas in SrTiO3. Nat. Mater. 6(2), 129–134 (2007)

    Article  CAS  Google Scholar 

  15. M. Cutler, N.F. Mott, Observation of Anderson localization in an electron gas. Phys. Rev. 181(3), 1336 (1969)

    Article  CAS  Google Scholar 

  16. K.P. Pernstich, B. Rossner, B. Batlogg, Field-effect-modulated Seebeck coefficient in organic semiconductors. Nat. Mater. 7(4), 321–325 (2008)

    Article  CAS  Google Scholar 

  17. H. Ohta, S.W. Kim, S. Kaneki, A. Yamamoto, T. Hashizume, High thermoelectric power factor of high-mobility 2D electron gas. Adv. Sci. 5(1), 1700696 (2018)

    Article  Google Scholar 

  18. A.V. Sanchela, T. Onozato, B. Feng, Y. Ikuhara, H. Ohta, Thermopower modulation clarification of the intrinsic effective mass in transparent oxide semiconductor BaSnO3. Phys. Rev. Mater. 1, 034603 (2017)

    Article  Google Scholar 

  19. H. Ohta, Electric-field thermopower modulation in SrTiO3-based field-effect transistors. J. Mater. Sci. 48(7), 2797–2805 (2013)

    Article  CAS  Google Scholar 

  20. H. Ohta, T. Mizuno, S.J. Zheng, T. Kato, Y. Ikuhara, K. Abe, H. Kumomi, K. Nomura, H. Hosono, Unusually large enhancement of thermopower in an electric field induced two-dimensional electron gas. Adv. Mater. 24(6), 740–744 (2012)

    Article  CAS  Google Scholar 

  21. H. Ohta, Y. Sato, T. Kato, S. Kim, K. Nomura, Y. Ikuhara, H. Hosono, Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal. Nat. Commun. 1, 118 (2010)

    Article  Google Scholar 

  22. H. Ohta, Y. Masuoka, R. Asahi, T. Kato, Y. Ikuhara, K. Nomura, H. Hosono, Field-modulated thermopower in SrTiO3-based field-effect transistors with amorphous 12CaO center dot 7Al(2)O(3) glass gate insulator. Appl. Phys. Lett. 95(11), 113505 (2009)

    Article  Google Scholar 

  23. T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3 (0 <= x <= 0.1). Phys. Rev. B 63(11), 113104 (2001)

    Article  Google Scholar 

  24. H. Ohta, K. Sugiura, K. Koumoto, Recent progress in oxide thermoelectric materials: p-type Ca3CO4O9 and n-type SrTiO3. Inorg. Chem. 47(19), 8429–8436 (2008)

    Article  CAS  Google Scholar 

  25. H. Ohta, Thermoelectrics based on strontium titanate. Mater. Today 10(10), 44–49 (2007)

    Article  CAS  Google Scholar 

  26. S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, K. Koumoto, Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature. Appl. Phys. Lett. 87(9), 092108 (2005)

    Article  Google Scholar 

  27. S. Ohta, T. Nomura, H. Ohta, K. Koumoto, High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 97(3), 034106 (2005)

    Article  Google Scholar 

  28. M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, H. Koinuma, Atomic control of the srtio3 crystal-surface. Science 266(5190), 1540–1542 (1994)

    Article  CAS  Google Scholar 

  29. H. Hosono, Y. Abe, An oxygen-effervescent aluminate glass. J. Am. Ceram. Soc. 70(3), C38–C39 (1987)

    Article  Google Scholar 

  30. H. Hosono, D.C. Paine, Handbook of Transparent Conductors (Springer, Berlin, 2011)

    Google Scholar 

  31. H.J. Kim, U. Kim, H.M. Kim, T.H. Kim, H.S. Mun, B.G. Jeon, K.T. Hong, W.J. Lee, C. Ju, K.H. Kim, K. Char, High mobility in a stable transparent perovskite oxide. Appl. Phys. Express 5(6), 061102 (2012)

    Article  Google Scholar 

  32. H.J. Kim, U. Kim, T.H. Kim, J. Kim, H.M. Kim, B.G. Jeon, W.J. Lee, H.S. Mun, K.T. Hong, J. Yu, K. Char, K.H. Kim, Physical properties of transparent perovskite oxides (Ba, La)SnO3 with high electrical mobility at room temperature. Phys. Rev. B 86(16), 165205 (2012)

    Article  Google Scholar 

  33. P.V. Wadekar, J. Alaria, M. O’Sullivan, N.L.O. Flack, T.D. Manning, L.J. Phillips, K. Durose, O. Lozano, S. Lucas, J.B. Claridge, M.J. Rosseinsky, Improved electrical mobility in highly epitaxial La:BaSnO3 films on SmScO3 (110) substrates. Appl. Phys. Lett. 105(5), 052104 (2014)

    Article  Google Scholar 

  34. C. Park, U. Kim, C.J. Ju, J.S. Park, Y.M. Kim, K. Char, High mobility field effect transistor based on BaSnO3 with Al2O3 gate oxide. Appl. Phys. Lett. 105(20), 203503 (2014)

    Article  Google Scholar 

  35. U. Kim, C. Park, T. Ha, Y.M. Kim, N. Kim, C. Ju, J. Park, J. Yu, J.H. Kim, K. Char, All-perovskite transparent high mobility field effect using epitaxial BaSnO3 and LaInO3. Apl Mater. 3(3), 036101 (2015)

    Article  Google Scholar 

  36. S. Raghavan, T. Schumann, H. Kim, J.Y. Zhang, T.A. Cain, S. Stemmer, High-mobility BaSnO3 grown by oxide molecular beam epitaxy. Apl Mater. 4(1), 016106 (2016)

    Article  Google Scholar 

  37. S.J. Allen, S. Raghavan, T. Schumann, K.M. Law, S. Stemmer, Conduction band edge effective mass of La-doped BaSnO3. Appl. Phys. Lett. 108(25), 252107 (2016)

    Article  Google Scholar 

  38. J. Shin, Y.M. Kim, Y. Kim, C. Park, K. Char, High mobility BaSnO3 films and field effect transistors on non-perovskite MgO substrate. Appl. Phys. Lett. 109(26), 262102 (2016)

    Article  Google Scholar 

  39. C.A. Niedermeier, S. Rhode, S. Fearn, K. Ide, M.A. Moram, H. Hiramatsu, H. Hosono, T. Kamiya, Solid phase epitaxial growth of high mobility La: BaSnO3 thin films co-doped with interstitial hydrogen. Appl. Phys. Lett. 108(17), 172101 (2016)

    Article  Google Scholar 

  40. E. Moreira, J.M. Henriques, D.L. Azevedo, E.W.S. Caetano, V.N. Freire, U.L. Fulco, E.L. Albuquerque, Structural and optoelectronic properties, and infrared spectrum of cubic BaSnO3 from first principles calculations. J. Appl. Phys. 112(4), 043703 (2012)

    Article  Google Scholar 

  41. H.R. Liu, J.H. Yang, H.J. Xiang, X.G. Gong, S.H. Wei, Origin of the superior conductivity of perovskite Ba(Sr)SnO3. Appl. Phys. Lett. 102(11), 112109 (2013)

    Article  Google Scholar 

  42. B. Hadjarab, A. Bouguelia, M. Trari, Optical and transport properties of lanthanum-doped stannate BaSnO3. J. Phys. D. Appl. Phys. 40(19), 5833–5839 (2007)

    Article  CAS  Google Scholar 

  43. H.J. Kim, J. Kim, T.H. Kim, W.J. Lee, B.G. Jeon, J.Y. Park, W.S. Choi, D.W. Jeong, S.H. Lee, J. Yu, T.W. Noh, K.H. Kim, Indications of strong neutral impurity scattering in Ba(Sn,Sb)O-3 single crystals. Phys. Rev. B 88(12), 125204 (2013)

    Article  Google Scholar 

  44. D. Seo, K. Yu, Y.J. Chang, E. Sohn, K.H. Kim, E.J. Choi, Infrared-optical spectroscopy of transparent conducting perovskite (La,Ba)SnO3 thin films. Appl. Phys. Lett. 104(2), 022102 (2014)

    Article  Google Scholar 

  45. B.C. Luo, X.S. Cao, K.X. Jin, C.L. Chen, Determination of the effective mass and nanoscale electrical transport in La-doped BaSnO3 thin films. Curr. Appl. Phys. 16(1), 20–23 (2016)

    Article  Google Scholar 

  46. Y. Hori, Z. Yatabe, T. Hashizume, Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors. J. Appl. Phys. 114(24), 244503 (2013)

    Article  Google Scholar 

  47. M.S. Brandt, P. Herbst, H. Angerer, O. Ambacher, M. Stutzmann, Thermopower investigation of n- and p-type GaN. Phys. Rev. B 58(12), 7786–7791 (1998)

    Article  CAS  Google Scholar 

  48. A. Sztein, H. Ohta, J.E. Bowers, S.P. DenBaars, S. Nakamura, High temperature thermoelectric properties of optimized InGaN. J. Appl. Phys. 110(12), 123709 (2011)

    Article  Google Scholar 

  49. K. Nagase, S. Takado, K. Nakahara, Thermoelectric enhancement in the two-dimensional electron gas of AlGaN/GaN heterostructures. Phys. Status Solidi A 213(4), 1088–1092 (2016)

    Article  CAS  Google Scholar 

  50. Y.C. Kong, Y.D. Zheng, C.H. Zhou, Y.Z. Deng, S.L. Gu, B. Shen, R. Zhang, R.L. Jiang, Y. Shi, P. Han, Study of two-dimensional electron gas in AlN/GaN heterostructure by a self-consistent method. Phys. Status Solidi B Basic Res. 241(4), 840–844 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromichi Ohta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohta, H. (2019). Electric Field Thermopower Modulation of 2D Electron Systems. In: Mele, P., et al. Thermoelectric Thin Films. Springer, Cham. https://doi.org/10.1007/978-3-030-20043-5_5

Download citation

Publish with us

Policies and ethics