Skip to main content

Automatic Particle Classification Through Deep Learning Approaches for Increasing Productivity in the Technical Cleanliness Laboratory

  • Conference paper
  • First Online:
Book cover Advances in Human Factors and Systems Interaction (AHFE 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 959))

Included in the following conference series:

Abstract

Understanding the properties of particles plays a vital role in assessing the component cleanliness and its origin in the manufacturing process. We propose a classification method using deep convolutional neural networks. Using a dataset of 70,000 annotated images, we achieve a accuracy of 97.7% for a binary classification in metal and non-metal particles comparable to state-of-the-art polarized light microscopy according to VDA 19-1 and ISO 16232. Manual follow-up checks in a cleanliness laboratory are not required due to the robustness of the classification system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreck, G., Holzapfel, Y.: Reinheitsvalidierung von kontaminationskritischen Produkten, reinraum online (2013). Accessed 31 Jan 2016

    Google Scholar 

  2. Verband der Deutschen Ingenieure e. V. 2083: Reinheitstauglichkeit und Oberflächenreinheit, VDI 2083. Beuth Verlag GmbH, Berlin (2006)

    Google Scholar 

  3. Verband der Automobilindustrie e. V. 19.1: Prüfung der Technischen Sauberkeit - Partikelverunreinigung funktionsrelevanter Automobilteile, 2nd edn, VDA 19.1 (2015)

    Google Scholar 

  4. Zwinkau, R., Krebs, M.: Schlussbericht zu dem IGF-Vorhaben 17495 N/1 Reinheitsgerechte Materialflusssysteme. Technische Universität Dortmund (2014)

    Google Scholar 

  5. Kloke, U.: Auslegung von Bauteilreinigungsanlagen mit Hilfe eines Fachinformationssystems. TU Dortmund (2003)

    Google Scholar 

  6. König-Birk, J.: Die richtige Analysemethode für filmische und partikuläre Verschmutzungen finden. Fachtagung Technische Sauberkeit, Stuttgart (2014)

    Google Scholar 

  7. Valet, O.: Methoden zur Partikelidentifizierung: Analyse der Stärken und Schwächen neuer Technologie. Fachtagung Technische Sauberkeit, Stuttgart (2014)

    Google Scholar 

  8. Grüner, S., Lumpe, H., Streibl, D.: Verfahren zur Analyse einer metallische und nichtmetallische Partikel enthaltenden Partikelansammlung und Vorrichtung zur Durchführung des Verfahrens, DE102013106929A1 (2013). https://patents.google.com/patent/DE102013106929A1/de. Accessed 4 Jan 2019

  9. Rochowicz, M., Schmauz, G.: Neues Rund um die Technische Sauberkeit: Restschmutz als Qualitätsindikator. J. für Oberflächentechnik (3), 54–56 (2010)

    Article  Google Scholar 

  10. Oh, J., Lee, J., Hwang, S.: Video data mining. In: Wang, J. (ed.) Encyclopedia of Data Warehousing and Mining. Idea Group Reference, Hershey (2006)

    Google Scholar 

  11. Hsu, W., Lee, M.L., Zhang, J.: Image mining: trends and developments. J. Intell. Inf. Syst. (1), 7–23 (2002). School of Computing. https://eprints.usq.edu.au/5630/. Accessed 30 Aug 2018

  12. Leavers, V.F.: Classifying wear debris particles with automatic image analysis. Pract. Oil Anal. 7(11) (2005)

    Google Scholar 

  13. Myshkin, N.K., Grigoriev, A.Y.: Morphology: texture, shape and color of friction surfaces and wear debris in tribodiagnostics problems. J. Frict. Wear 29, 192–199 (2008)

    Article  Google Scholar 

  14. Albidewi, I.A.: Wear particles surface identification using neural network. IJCSNS Int. J. Comput. Sci. Netw. Secur. 8(1), 262–265 (2008)

    Google Scholar 

  15. Chollet, F.: Deep Learning mit Python, 2018 Auflage. MITP, Frechen (2018)

    Google Scholar 

  16. Google Trends: Weltweite Suchanfragen für “Deep Learning”: 01/2014–01/2019 (2019)

    Google Scholar 

  17. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., et al.: CRISP-DM 1.0 - step-by-step data mining guide (2000)

    Google Scholar 

  18. Haberzettl, S.: Vergleichsversuche mit partikulären Messsystemen. Fachtagung Technische Sauberkeit, Leipzig (2018)

    Google Scholar 

  19. Dodge, S.F., Karam, L.J.: Understanding how image quality affects deep neural networks. CoRR, abs/1604.04004 (2016)

    Google Scholar 

  20. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. CoRR, abs/1602.07261 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronny Zwinkau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zwinkau, R., Frentrup, S., Möhle, R., Deuse, J. (2020). Automatic Particle Classification Through Deep Learning Approaches for Increasing Productivity in the Technical Cleanliness Laboratory. In: Nunes, I. (eds) Advances in Human Factors and Systems Interaction. AHFE 2019. Advances in Intelligent Systems and Computing, vol 959. Springer, Cham. https://doi.org/10.1007/978-3-030-20040-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20040-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20039-8

  • Online ISBN: 978-3-030-20040-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics