Skip to main content

Discrete Version of an Optimal Partitioning Problem

  • Conference paper
  • First Online:
Difference Equations, Discrete Dynamical Systems and Applications (ICDEA 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 287))

Included in the following conference series:

  • 524 Accesses

Abstract

Many recent works deal with problems concerning optimal partitions related to spectral quantities of domains in Euclidean spaces or on manifolds. Due to the complexity of these problems, few explicit solutions are known. Therefore, numerical algorithms have been developed in order to find approximations of optimal partitions. Such algorithms are based on discretizations of the domain and lead to finite dimensional difference equations. In the following, the coupling of the gradient descent method with a projection algorithm leads to a non-linear difference equation. Various properties of the discrete problem are discussed and numerical results illustrating the behaviour of the discretization scheme are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alt, H.W., Caffarelli, L.A., Friedman, A.: Variational problems with two phases and their free boundaries. Trans. Am. Math. Soc. 282(2), 431–461 (1984). https://doi.org/10.2307/1999245

    Article  MathSciNet  MATH  Google Scholar 

  2. Bogosel, B.: Efficient algorithm for optimizing spectral partitions. Appl. Math. Comput. 333, 61–75 (2018). https://doi.org/10.1016/j.amc.2018.03.087

    Article  MathSciNet  Google Scholar 

  3. Bogosel, B., Bonnaillie-Nöel, V.: p-minimal k-partitions for eigenvalues. Interfaces Free Boundaries 20(1), 129–163 (2018). https://doi.org/10.4171/IFB/399

    Article  MathSciNet  MATH  Google Scholar 

  4. Bogosel, B., Velichkov, B.: A multiphase shape optimization problem for eigenvalues: qualitative study and numerical results. SIAM J. Numer. Anal. 54(1), 210–241 (2016). https://doi.org/10.1137/140976406

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonnaillie-Noël, V., Helffer, B.: Nodal and spectral minimal partitions—the state of the art in 2016. In: Shape Optimization and Spectral Theory, pp. 353–397. De Gruyter Open, Warsaw (2017)

    Google Scholar 

  6. Bourdin, B., Bucur, D., Oudet, É.: Optimal partitions for eigenvalues. SIAM J. Sci. Comput. 31(6), 4100–4114 (2009). https://doi.org/10.1137/090747087

    Article  MathSciNet  MATH  Google Scholar 

  7. Bozorgnia, F.: Optimal partitions for first eigenvalues of the Laplace operator. Numer. Methods Partial Differ. Equ. 31(3), 923–949 (2015). https://doi.org/10.1002/num.21927

    Article  MathSciNet  MATH  Google Scholar 

  8. Bucur, D., Buttazzo, G., Henrot, A.: Existence results for some optimal partition problems. Adv. Math. Sci. Appl. 8(2), 571–579 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Bucur, D., Fragalà, I., Velichkov, B., Verzini, G.: On the honeycomb conjecture for a class of minimal convex partitions. Trans. Am. Math. Soc. (2017). arxiv: 1703.05383

  10. Cafferelli, L.A., Lin, F.H.: An optimal partition problem for eigenvalues. J. Sci. Comput. 31(1–2), 5–18 (2007). https://doi.org/10.1007/s10915-006-9114-8

    Article  MathSciNet  MATH  Google Scholar 

  11. Conti, M., Terracini, S., Verzini, G.: An optimal partition problem related to nonlinear eigenvalues. J. Funct. Anal. 198(1), 160–196 (2003). https://doi.org/10.1016/S0022-1236(02)00105-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Cybulski, O., Hoł yst, R.: Three-dimensional space partition based on the first Laplacian eigenvalues in cells. Phys. Rev. E 77(5) (2008). https://doi.org/10.1103/PhysRevE.77.056101

  13. Elliott, C.M., Ranner, T.: A computational approach to an optimal partition problem on surfaces. Interfaces Free Boundaries 17(3), 353–379 (2015). https://doi.org/10.4171/IFB/346

    Article  MathSciNet  MATH  Google Scholar 

  14. Osting, B., White, C.D., Oudet, É.: Minimal Dirichlet energy partitions for graphs. SIAM J. Sci. Comput. 36(4), A1635–A1651 (2014). https://doi.org/10.1137/130934568

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, D., Osting, B.: A diffusion generated method for computing Dirichlet partitions (2018). arXiv:1802.02682

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beniamin Bogosel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bogosel, B. (2019). Discrete Version of an Optimal Partitioning Problem. In: Elaydi, S., Pötzsche, C., Sasu, A. (eds) Difference Equations, Discrete Dynamical Systems and Applications. ICDEA 2017. Springer Proceedings in Mathematics & Statistics, vol 287. Springer, Cham. https://doi.org/10.1007/978-3-030-20016-9_9

Download citation

Publish with us

Policies and ethics