Skip to main content

Cytological and Molecular Cytogenetic Insights into the Cynara cardunculus Genome

  • Chapter
  • First Online:
The Globe Artichoke Genome

Abstract

Before the recent advances in molecular biology and sequencing techniques enabled a deep knowledge of the complete nucleotide sequence of many plant genomes, cytological and karyological studies have provided the first information concerning the genome organization of living beings. As stated by Figueroa and Bass (2010), plant cytogeneticists were among the earliest researchers who started to visualize genomes nearly a century before the first plant genome was sequenced (The Arabidopsis genome initiative 2000). In spite of the high development of next-generation sequencing approach and of the dramatic increase in available data regarding sequenced genomes, the cytological analysis of cell nucleus content remains a valuable tool for evolutionary studies and for structural and functional genomic research. Since Wilhelm Gottfried von Waldeyer-Hartz coined the term chromosome in 1888, many cytological techniques have been developed to disclose nucleus content and to allow a detailed description of the chromosome complement of plant species. Recently, some of these techniques have been applied to the cytological analysis and the molecular cytogenetic characterization of Cynara cardunculus complement, a traditional vegetable crop of the Mediterranean basin. The DNA content and a detailed karyotype of the two cultivated botanical varieties C. cardunculus var. altilis DC (cultivated cardoon) and C. cardunculus L. var. scolymus L. (globe artichoke) have been reported (Khaldi et al. 2014; Falistocco 2016; Giorgi et al. 2016). In this chapter, some of the used methodological approaches and the main results obtained by different authors will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ancora G, Belli Donini ML, Cuozzo L (1981) Globe artichoke plants obtained from shoot apices through rapid in vitro micropropagation. Sci Hortic 14:207–213

    Article  CAS  Google Scholar 

  • Andras SC, Hartman TPV, Marshall JA, Marchant R, Power JB, Cocking EC, Davey MR (1999) A drop-spreading technique to produce cytoplasm-free mitotic preparations from plants with small chromosomes. Chromosome Res 7(8):641–647

    Article  CAS  PubMed  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(3):208–218

    Article  CAS  Google Scholar 

  • Battaglia E (1994) Nucleosome and nucleotype: a terminological criticism. Caryologia 47:193–197

    Article  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95(1):45–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 107(3):467–590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 274(933):227–274

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado Á, Jouve N (2010) Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma 119(5):495–503

    Article  PubMed  Google Scholar 

  • Cuadrado Á, Cardoso M, Jouve N (2008) Increasing the physical markers of wheat chromosomes using SSRs as FISH probes. Genome 51:809–815

    Article  CAS  PubMed  Google Scholar 

  • Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95(1):99–110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Doležel J, Greilhuber J (2010) Nuclear genome size: are we getting closer? Cytom Part A J Int Soc Anal Cytol 77(7):635–642

    Article  CAS  Google Scholar 

  • Doležel J, Binarova P, Lucretti S (1989) Analysis of nuclear-DNA content in plant-cells by flow-cytometry. Biol Plant 31(2):113–120

    Article  Google Scholar 

  • Doležel J, Sgorbati S, Lucretti S (1992) Comparison of 3 DNA fluorochromes for flow cytometric estimation of nuclear-DNA content in plants. Physiol Plant 85(4):625–631

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Nardi L, Obermaier R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Botany 82(Suppl. A):17–26

    Article  Google Scholar 

  • Falistocco E (2016) Cytogenetic characterization of cultivated globe artichoke (Cynara cardunculus var. scolymus) and cardoon (C. altilis). Caryologia 69:1–4

    Article  Google Scholar 

  • Feulgen R, Rossenbeck H (1924) Mikroskopisch-chemischer Nachweis einer Nucleinsaure vom Typus der Thymonucleinsaure und die darauf beruhende elektive Farbung vom Zellkernen in mikroskopischen Praparaten. Zts Phys Chem 135:203–248

    CAS  Google Scholar 

  • Figueroa DM, Bass HW (2010) A historical and modern perspective on plant cytogenetics. Brief Funct Genomics 9(2):95–102

    Article  PubMed  Google Scholar 

  • Fiori A, Beguinot A (1904) Flora analitica d’Italia (Vol. III). Tipografia del Seminario, Padova, p 527

    Google Scholar 

  • Fregonezi JN, Torezan JMD, Vanzela ALL (2004) A karyotypic study of three southern Brazilian Asteraceae species using fluorescence in situ hybridization with a 45S rDNA probe and C-CMA3 banding. Genet Mol Biol 27(2):223–227

    Article  CAS  Google Scholar 

  • Fu S, Tang Z (2015) Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep 5:10552

    Article  PubMed Central  PubMed  Google Scholar 

  • Funk VA, Susanna A, Stuessy TF, Robinson H (2009) Classification of Compositae. In: Funk VA, Susanna A, Stuessy T, Bayer R (eds) Systematics, evolution and biogeography of the Compositae. IAPT, Vienna, pp 171–189

    Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 3:220(4601):1049–1051

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL (1975) Callus and cell culture. In: Gamborg OL, Wettwr LR (eds) Plant tissue culture methods. National Research Council Canada, Prairie Regional Laboratory, Saskaton Sask, pp 1–10

    Google Scholar 

  • Garcia S, Panero JL, Siroky J, Kovarik A (2010) Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. BMC Plant Biol 10:176

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Garnatje T, Canela MÁ, Garcia S, Hidalgo O, Pellicer J, Sánchez I, Siljak JS, Vitales JD, Vallès J (2011) GSAD: A genome size in the Asteraceae database. Cytom Part A 79A(6):401–404

    Article  CAS  Google Scholar 

  • Gatto A, De Paola D, Bagnoli F, Vendramin GG, Sonnante G (2013) Population structure of Cynara cardunculus complex and the origin of the conspecific crops artichoke and cardoon. Ann Bot 112:855–865

    Article  PubMed Central  PubMed  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7(7):1869–1885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giorgi D, Pandozy G, Farina A, Grosso V, Lucretti S, Crinò P, Saccardo F (2013a) Karyotype of globe artichoke (Cynara cardunculus var. scolymus): preliminary studies to define its chromosome morphology. Acta Hort 983:133–138

    Article  Google Scholar 

  • Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S (2013b) FISHIS: Fluorescence In Situ Hybridization in Suspension and Chromosome Flow Sorting Made Easy. PLoS ONE 8(2):e57994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giorgi D, Pandozy G, Farina A, Grosso V, Lucretti S, Gennaro A, Crinò P, Saccardo F (2016) First detailed karyo-morphological analysis and molecular cytological study of leafy cardoon and globe artichoke, two multi-use Asteraceae crops. Comp Cytogenet 10(3):447–463

    Article  PubMed Central  PubMed  Google Scholar 

  • Greilhuber J (1988) “Self-tanning”—a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Plant Syst Evol 158(2):87–96

    CAS  Google Scholar 

  • Greilhuber J (2008) Cytochemistry and C-values: the less-well-known world of nuclear DNA amounts. Ann Bot 101(6):791–804

    Article  CAS  PubMed  Google Scholar 

  • Guerra M (1986) Reviewing chromosome nomenclature of Levan et al. Rev Brasil Genet 4:741–743

    Google Scholar 

  • Hanson L, Brown RL, Boyd A, Johnson MAT, Bennett MD (2003) First nuclear DNA C-values for 28 angiosperm genera. Ann Bot 91:1–8

    Article  CAS  Google Scholar 

  • Johnston JS, Bennett MD, Rayburn AL, Galbraith DW, Price HJ (1999) Reference standards for determination of DNA content of plant nuclei. Am J Bot 86(5):609–613

    Article  CAS  PubMed  Google Scholar 

  • Khaldi S, Hidalgo O, Garnatje T, El Gazzah M (2014) Karyological and genome size insights into cardoon (Cynara cardunculus L., Asteraceae) in Tunisia. Caryologia 67(1):57–62

    Article  Google Scholar 

  • Kiernan JA (1999) Histological and histochemical methods: theory and practice, 3rd edn. Oxford, Butterworth-Heinemann, Boston

    Google Scholar 

  • Levan A, Fredga K, Sandberg A (1964) A nomenclature for centromeric position of chromosomes. Hereditas 52(2):201–220

    Article  Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot 98(3):679–689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78(2):41–51

    Article  CAS  PubMed  Google Scholar 

  • Ochatt SJ (2008) Flow cytometry in plant breeding. Cytom Part A Jo Int Soc Anal Cytol 73(7):581–598

    Article  CAS  Google Scholar 

  • Rasch EM, Barr HJ, Rasch RW (1971) The DNA content of sperm of Drosophila melanogaster. Chromosoma 33(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 12:225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rottenberg A, Zohary D (1996) The wild ancestry of the cultivated artichoke. Genet Resour Crop Evol 43:53–58

    Article  Google Scholar 

  • Schdmidt G, Thannhauser SJ (1945) A method for the determination of desoxyribonucleic acid, ribonucleic acid, and phosphoproteins in animal tissues. J Biol Chem 161:83

    Google Scholar 

  • Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. BIOS Scientific Publishers

    Google Scholar 

  • Singh RJ (2018) Practical manual on plant cytogenetics. CRC Press

    Google Scholar 

  • Sliwinska E (2018) Flow cytometry—a modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Horticulturae 30(1):103

    Article  Google Scholar 

  • Swift H (1950) The constancy of deoxyribose nucleic acid in plant nuclei. Proc Natl Acad Sci 36:643–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Tiersch TR, Chandler RW, Wachtel SS, Elias S (1989) Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry 10:706–710

    Article  CAS  PubMed  Google Scholar 

  • Vallès J, Canela MÁ, Garcia S, Hidalgo O, Pellicer J, Sánchez-Jiménez I, Siljak-Yakovlev S, Vitales D, Garnatje T (2013) Genome size variation and evolution in the family Asteraceae. Caryologia 66(3):221–235

    Article  Google Scholar 

  • Van’T Hof J (1965) Relationships between mitotic cycle duration, S period duration and the average rate of DNA synthesis in the root meristem cells of several plants. Exp Cell Res 39(1):48–58

    Article  Google Scholar 

  • Wang J, Liu J, Kang M (2015) Quantitative testing of the methodology for genome size estimation in plants using flow cytometry: a case study of the Primulina genus. Front Plant Sci 6:354

    PubMed Central  PubMed  Google Scholar 

  • Weiss-Schneeweiss H, Tremetsberger K, Schneeweiss GM, Parker JS, Stuessy TF (2008) Karyotype diversification and evolution in diploid and polyploid south American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Ann Bot 101(7):909–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiklund A (1992) The genus Cynara L. (Asteraceae-Cardueae). Bot J Linn Soc 109:75–123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debora Giorgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giorgi, D., Pandozy, G., Farina, A., Grosso, V., Crinò, P., Lucretti, S. (2019). Cytological and Molecular Cytogenetic Insights into the Cynara cardunculus Genome. In: Portis, E., Acquadro, A., Lanteri, S. (eds) The Globe Artichoke Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-20012-1_8

Download citation

Publish with us

Policies and ethics