Cytological and Molecular Cytogenetic Insights into the Cynara cardunculus Genome

  • Debora GiorgiEmail author
  • Gianmarco Pandozy
  • Anna Farina
  • Valentina Grosso
  • Paola Crinò
  • Sergio Lucretti
Part of the Compendium of Plant Genomes book series (CPG)


Before the recent advances in molecular biology and sequencing techniques enabled a deep knowledge of the complete nucleotide sequence of many plant genomes, cytological and karyological studies have provided the first information concerning the genome organization of living beings. As stated by Figueroa and Bass (2010), plant cytogeneticists were among the earliest researchers who started to visualize genomes nearly a century before the first plant genome was sequenced (The Arabidopsis genome initiative 2000). In spite of the high development of next-generation sequencing approach and of the dramatic increase in available data regarding sequenced genomes, the cytological analysis of cell nucleus content remains a valuable tool for evolutionary studies and for structural and functional genomic research. Since Wilhelm Gottfried von Waldeyer-Hartz coined the term chromosome in 1888, many cytological techniques have been developed to disclose nucleus content and to allow a detailed description of the chromosome complement of plant species. Recently, some of these techniques have been applied to the cytological analysis and the molecular cytogenetic characterization of Cynara cardunculus complement, a traditional vegetable crop of the Mediterranean basin. The DNA content and a detailed karyotype of the two cultivated botanical varieties C. cardunculus var. altilis DC (cultivated cardoon) and C. cardunculus L. var. scolymus L. (globe artichoke) have been reported (Khaldi et al. 2014; Falistocco 2016; Giorgi et al. 2016). In this chapter, some of the used methodological approaches and the main results obtained by different authors will be discussed.


Artichoke Cardoon Karyotype Molecular cytogenetic FISHIS Fast FISH Flow cytometry 


  1. Ancora G, Belli Donini ML, Cuozzo L (1981) Globe artichoke plants obtained from shoot apices through rapid in vitro micropropagation. Sci Hortic 14:207–213Google Scholar
  2. Andras SC, Hartman TPV, Marshall JA, Marchant R, Power JB, Cocking EC, Davey MR (1999) A drop-spreading technique to produce cytoplasm-free mitotic preparations from plants with small chromosomes. Chromosome Res 7(8):641–647Google Scholar
  3. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(3):208–218Google Scholar
  4. Battaglia E (1994) Nucleosome and nucleotype: a terminological criticism. Caryologia 47:193–197Google Scholar
  5. Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95(1):45–90PubMedCentralPubMedGoogle Scholar
  6. Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 107(3):467–590PubMedCentralPubMedGoogle Scholar
  7. Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 274(933):227–274Google Scholar
  8. Cuadrado Á, Jouve N (2010) Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma 119(5):495–503Google Scholar
  9. Cuadrado Á, Cardoso M, Jouve N (2008) Increasing the physical markers of wheat chromosomes using SSRs as FISH probes. Genome 51:809–815Google Scholar
  10. Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95(1):99–110PubMedCentralPubMedGoogle Scholar
  11. Doležel J, Greilhuber J (2010) Nuclear genome size: are we getting closer? Cytom Part A J Int Soc Anal Cytol 77(7):635–642Google Scholar
  12. Doležel J, Binarova P, Lucretti S (1989) Analysis of nuclear-DNA content in plant-cells by flow-cytometry. Biol Plant 31(2):113–120Google Scholar
  13. Doležel J, Sgorbati S, Lucretti S (1992) Comparison of 3 DNA fluorochromes for flow cytometric estimation of nuclear-DNA content in plants. Physiol Plant 85(4):625–631Google Scholar
  14. Doležel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Nardi L, Obermaier R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Botany 82(Suppl. A):17–26Google Scholar
  15. Falistocco E (2016) Cytogenetic characterization of cultivated globe artichoke (Cynara cardunculus var. scolymus) and cardoon (C. altilis). Caryologia 69:1–4Google Scholar
  16. Feulgen R, Rossenbeck H (1924) Mikroskopisch-chemischer Nachweis einer Nucleinsaure vom Typus der Thymonucleinsaure und die darauf beruhende elektive Farbung vom Zellkernen in mikroskopischen Praparaten. Zts Phys Chem 135:203–248Google Scholar
  17. Figueroa DM, Bass HW (2010) A historical and modern perspective on plant cytogenetics. Brief Funct Genomics 9(2):95–102Google Scholar
  18. Fiori A, Beguinot A (1904) Flora analitica d’Italia (Vol. III). Tipografia del Seminario, Padova, p 527Google Scholar
  19. Fregonezi JN, Torezan JMD, Vanzela ALL (2004) A karyotypic study of three southern Brazilian Asteraceae species using fluorescence in situ hybridization with a 45S rDNA probe and C-CMA3 banding. Genet Mol Biol 27(2):223–227Google Scholar
  20. Fu S, Tang Z (2015) Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep 5:10552PubMedCentralPubMedGoogle Scholar
  21. Funk VA, Susanna A, Stuessy TF, Robinson H (2009) Classification of Compositae. In: Funk VA, Susanna A, Stuessy T, Bayer R (eds) Systematics, evolution and biogeography of the Compositae. IAPT, Vienna, pp 171–189Google Scholar
  22. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 3:220(4601):1049–1051Google Scholar
  23. Gamborg OL (1975) Callus and cell culture. In: Gamborg OL, Wettwr LR (eds) Plant tissue culture methods. National Research Council Canada, Prairie Regional Laboratory, Saskaton Sask, pp 1–10Google Scholar
  24. Garcia S, Panero JL, Siroky J, Kovarik A (2010) Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. BMC Plant Biol 10:176PubMedCentralPubMedGoogle Scholar
  25. Garnatje T, Canela MÁ, Garcia S, Hidalgo O, Pellicer J, Sánchez I, Siljak JS, Vitales JD, Vallès J (2011) GSAD: A genome size in the Asteraceae database. Cytom Part A 79A(6):401–404Google Scholar
  26. Gatto A, De Paola D, Bagnoli F, Vendramin GG, Sonnante G (2013) Population structure of Cynara cardunculus complex and the origin of the conspecific crops artichoke and cardoon. Ann Bot 112:855–865PubMedCentralPubMedGoogle Scholar
  27. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7(7):1869–1885PubMedCentralPubMedGoogle Scholar
  28. Giorgi D, Pandozy G, Farina A, Grosso V, Lucretti S, Crinò P, Saccardo F (2013a) Karyotype of globe artichoke (Cynara cardunculus var. scolymus): preliminary studies to define its chromosome morphology. Acta Hort 983:133–138Google Scholar
  29. Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S (2013b) FISHIS: Fluorescence In Situ Hybridization in Suspension and Chromosome Flow Sorting Made Easy. PLoS ONE 8(2):e57994PubMedCentralPubMedGoogle Scholar
  30. Giorgi D, Pandozy G, Farina A, Grosso V, Lucretti S, Gennaro A, Crinò P, Saccardo F (2016) First detailed karyo-morphological analysis and molecular cytological study of leafy cardoon and globe artichoke, two multi-use Asteraceae crops. Comp Cytogenet 10(3):447–463PubMedCentralPubMedGoogle Scholar
  31. Greilhuber J (1988) “Self-tanning”—a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Plant Syst Evol 158(2):87–96Google Scholar
  32. Greilhuber J (2008) Cytochemistry and C-values: the less-well-known world of nuclear DNA amounts. Ann Bot 101(6):791–804Google Scholar
  33. Guerra M (1986) Reviewing chromosome nomenclature of Levan et al. Rev Brasil Genet 4:741–743Google Scholar
  34. Hanson L, Brown RL, Boyd A, Johnson MAT, Bennett MD (2003) First nuclear DNA C-values for 28 angiosperm genera. Ann Bot 91:1–8Google Scholar
  35. Johnston JS, Bennett MD, Rayburn AL, Galbraith DW, Price HJ (1999) Reference standards for determination of DNA content of plant nuclei. Am J Bot 86(5):609–613Google Scholar
  36. Khaldi S, Hidalgo O, Garnatje T, El Gazzah M (2014) Karyological and genome size insights into cardoon (Cynara cardunculus L., Asteraceae) in Tunisia. Caryologia 67(1):57–62Google Scholar
  37. Kiernan JA (1999) Histological and histochemical methods: theory and practice, 3rd edn. Oxford, Butterworth-Heinemann, BostonGoogle Scholar
  38. Levan A, Fredga K, Sandberg A (1964) A nomenclature for centromeric position of chromosomes. Hereditas 52(2):201–220Google Scholar
  39. Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot 98(3):679–689PubMedCentralPubMedGoogle Scholar
  40. Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78(2):41–51Google Scholar
  41. Ochatt SJ (2008) Flow cytometry in plant breeding. Cytom Part A Jo Int Soc Anal Cytol 73(7):581–598Google Scholar
  42. Rasch EM, Barr HJ, Rasch RW (1971) The DNA content of sperm of Drosophila melanogaster. Chromosoma 33(1):1–18Google Scholar
  43. Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 12:225PubMedCentralPubMedGoogle Scholar
  44. Rottenberg A, Zohary D (1996) The wild ancestry of the cultivated artichoke. Genet Resour Crop Evol 43:53–58Google Scholar
  45. Schdmidt G, Thannhauser SJ (1945) A method for the determination of desoxyribonucleic acid, ribonucleic acid, and phosphoproteins in animal tissues. J Biol Chem 161:83Google Scholar
  46. Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. BIOS Scientific PublishersGoogle Scholar
  47. Singh RJ (2018) Practical manual on plant cytogenetics. CRC PressGoogle Scholar
  48. Sliwinska E (2018) Flow cytometry—a modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Horticulturae 30(1):103Google Scholar
  49. Swift H (1950) The constancy of deoxyribose nucleic acid in plant nuclei. Proc Natl Acad Sci 36:643–654Google Scholar
  50. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815Google Scholar
  51. Tiersch TR, Chandler RW, Wachtel SS, Elias S (1989) Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry 10:706–710Google Scholar
  52. Vallès J, Canela MÁ, Garcia S, Hidalgo O, Pellicer J, Sánchez-Jiménez I, Siljak-Yakovlev S, Vitales D, Garnatje T (2013) Genome size variation and evolution in the family Asteraceae. Caryologia 66(3):221–235Google Scholar
  53. Van’T Hof J (1965) Relationships between mitotic cycle duration, S period duration and the average rate of DNA synthesis in the root meristem cells of several plants. Exp Cell Res 39(1):48–58Google Scholar
  54. Wang J, Liu J, Kang M (2015) Quantitative testing of the methodology for genome size estimation in plants using flow cytometry: a case study of the Primulina genus. Front Plant Sci 6:354PubMedCentralPubMedGoogle Scholar
  55. Weiss-Schneeweiss H, Tremetsberger K, Schneeweiss GM, Parker JS, Stuessy TF (2008) Karyotype diversification and evolution in diploid and polyploid south American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Ann Bot 101(7):909–918PubMedCentralPubMedGoogle Scholar
  56. Wiklund A (1992) The genus Cynara L. (Asteraceae-Cardueae). Bot J Linn Soc 109:75–123Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Debora Giorgi
    • 1
    Email author
  • Gianmarco Pandozy
    • 1
  • Anna Farina
    • 1
  • Valentina Grosso
    • 1
  • Paola Crinò
    • 1
  • Sergio Lucretti
    • 1
  1. 1.Italian National Agency for New Technologies, Energy and Sustainable Economic (ENEA)RomeItaly

Personalised recommendations