Bio-active Compounds and Their Synthetic Pathway

  • Vincenzo Lattanzio
  • Cinzia Comino
  • Andrea Moglia
  • Sergio LanteriEmail author
Part of the Compendium of Plant Genomes book series (CPG)


Traditional European medicine has attributed to globe artichoke, as well as to its close relatives cultivated and wild cardoons, many beneficial properties to treat chronic liver diseases, jaundice, hepatitis and arteriosclerosis. Indeed, globe artichoke is a source of bio-active compounds, such as caffeoylquinic acid derivatives (chlorogenic acid and dicaffeoylquinic acid isomers) and sesquiterpene lactones, such as cynaropicrin, grosheimin and its derivatives. Furthermore, globe artichoke roots are rich in inulin, a natural fibre which has been demonstrated to improve the balance of beneficial bacteria in the human gut and it is widely used in food industry to modify texture, replace fat or as low-calorie sweetener. This chapter describes the main bio-active compounds present in globe artichoke as well as their pharmacological properties and potential applications. Furthermore, it reports an updated state of the art on the known steps of their biosynthetic pathway and characterization of genes involved.


Caffeoylquinic acids Chlorogenic acid Inulin Sesquiterpene lactones Biosynthetic pathway 


  1. Adekenova AS, Sakenova PY, Ivasenko SA, Khabarov IA, Adekenov SM, Berthod A (2015) Gram-scale purification of two sesquiterpene lactones from chartolepsis intermedia boiss. Chromatographia 79:37–43CrossRefGoogle Scholar
  2. Adzet T, Camarasa J, Laguna JC (1987) Hepatoprotective activity of polyphenolic compounds from Cynara scolymus against CCl4 toxicity in isolated rat hepatocytes. J Nat Prod 50:612–617CrossRefGoogle Scholar
  3. Arakawa T, Yamasaki H, Ikeda K, Ejima D, Naito T, Koyama A (2009) Antiviral and virucidal activities of natural products. Curr Med Chem 16:2485–2497. Scholar
  4. Bachelier A, Mayer R, Klein CD (2006) Sesquiterpene lactones are potent and irreversible inhibitors of the antibacterial target enzyme MurA. Bioorganic Med Chem Lett 16:5605–5609CrossRefGoogle Scholar
  5. Barclay T, Ginic-Markovic M, Cooper P, Petrovsky N (2010) Inulin—a versatile polysaccharide with multiple pharmaceutical and food chemical uses. J Excip Food Chem 1:27–50Google Scholar
  6. Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2(109–11):3Google Scholar
  7. Bhattacharyya PR, Barua NC, Ghosh AC (1995) Cynaropicrin from Tricholepis glaberrima: a potential insect feeding deterrent compound. Ind Crops Prod 4:291–294CrossRefGoogle Scholar
  8. Brown J, Rice-Evans C (1998) Luteolin-rich artichoke extract protects low density lipoprotein from oxidation in vitro. Free Radic Res 29:247–255. Scholar
  9. Bouwmeester HJ, Kodde J, Verstappen FWA, Altug IG, de Kraker JW, Wallaart TE (2002) Isolation and characterization of two germacrene A synthase cDNA clones from chicory. Plant Physiol 129:134–144PubMedCentralCrossRefPubMedGoogle Scholar
  10. Bundy R, Walker AF, Middleton RW, Wallis C, Simpson HCR (2008) Artichoke leaf extract (Cynara scolymus) reduces plasma cholesterol in otherwise healthy hypercholesterolemic adults: a randomized, double blind placebo controlled trial. Phytomedicine 15:668–675CrossRefGoogle Scholar
  11. Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746CrossRefGoogle Scholar
  12. Chaturvedi D (2011) Sesquiterpene lactones: structural diversity and their biological activities. In: Opportunity, challenge and scope of natural products in medicinal chemistry. Natural Products Chemistry Division, North-East Institute of Science and Technology (CSIR), Trivandrum, 313–334Google Scholar
  13. Cho JY, Baik KU, Jung JH, Park MH (2000) In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa. Eur J Pharmacol 398:399–407CrossRefGoogle Scholar
  14. Cho JY, Kim AR, Joo HG, Kim BH, Rhee MH, Yoo ES et al (2004) Cynaropicrin, a sesquiterpene lactone, as a new strong regulator of CD29 and CD98 functions. Biochem Biophys Res Commun 313:954–961CrossRefGoogle Scholar
  15. Choi SZ, Choi SU, Lee KR (2005) Cytotoxic sesquiterpene lactones from Saussurea calcicola. Arch Pharmacal Res 28:1142–1146CrossRefGoogle Scholar
  16. Clifford MN, Jaganath IB, Ludwig IA, Crozier A (2017) Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat Prod Rep 34:1391–1421CrossRefGoogle Scholar
  17. Comino C, Hehn A, Moglia A, Menin B, Bourgaud F, Lanteri S, Portis E (2009) The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway. BMC Plant Biol 9:30PubMedCentralCrossRefPubMedGoogle Scholar
  18. Comino C, Lanteri S, Portis E, Acquadro A, Romani A, Hehn A, Larbat R, Bourgaud F (2007) Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L. BMC Plant Biol 7:14PubMedCentralCrossRefPubMedGoogle Scholar
  19. Costabile A, Kolida S, Klinder A, Gietl E, Bauerlein M, Frohburg C, Landschutze V, Gibson GR (2010) A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long chain inulin extracted from globe artichoke (Cynara scolymus) in healthy subjects. Br J Nutr 104:1007–1017CrossRefGoogle Scholar
  20. Cravotto G, Nano G, Binello A, Spagliardi P, Seu G (2005) Chemical and biological modification of cynaropicrin and grosheimin: a structure–bitterness relationship study. J Sci Food Agric 85:1757–1764CrossRefGoogle Scholar
  21. De Kraker JW, Franssen MC, Joerink M, de Groot A, Bouwmeester HJ (2002) Biosynthesis of costunolide, dihydrocostunolide, and leucodin. Demonstration of cytochrome P450-catalyzed formation of the lactone ring present in sesquiterpene lactones of chicory. Plant Physiol 129:257–268PubMedCentralCrossRefPubMedGoogle Scholar
  22. Edelman J, Jefford TG (1968) The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytol 67:517–531CrossRefGoogle Scholar
  23. Elsebai MF, Mocan A, Atanasov AG (2016a) Cynaropicrin: a comprehensive research review and therapeutic potential as an anti-hepatitis C virus agent. Front Pharmacol 7:472PubMedCentralCrossRefPubMedGoogle Scholar
  24. Elsebai MF, Koutsoudakis G, Saludes V, Pérez-Vilaró G, Turpeinen A, Mattila S et al (2016b) Pan-genotypic hepatitis C virus inhibition by natural products derived from the wild Egyptian artichoke. J Virol 90:1918–1930PubMedCentralCrossRefPubMedGoogle Scholar
  25. Eljounaidi K, Cankar K, Comino C, Moglia A, Hehn A, Bourgaud F, Bouwmeester H, Menin B, Lanteri S, Beekwilder J (2014) Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway. Plant Sci 223:59–68CrossRefGoogle Scholar
  26. Eljounaidi K, Comino C, Moglia A, Cankar K, Genre A, Hehn A, Bourgaud F, Beekwilder J, Lanteri S (2015) Accumulation of cynaropicrin in globe artichoke and localization of enzymes involved in its biosynthesis. Plant Sci 239:128–136CrossRefGoogle Scholar
  27. Ferro AM, Ramos P, Guerreiro O, Jerónimo E, Pires I, Capel C, Capel J, Lozano R, Duarte MF, Oliveira MM, Gonçalves S (2017) Impact of novel SNPs identified in Cynara cardunculus genes on functionality of proteins regulating phenylpropanoid pathway and their association with biological activities. BMC Genom 18:183CrossRefGoogle Scholar
  28. Ferro AM, Ramos P, Guerra A, Parreira P, Brás T, Guerreiro O, Jerónimo E, Capel C, Capel J, Yuste-Lisbona FJ, Duarte MF, Lozano R, Oliveira MM, Gonçalves S (2018) Haplotype analysis of the germacrene A synthase gene and association with cynaropicrin content and biological activities in Cynara cardunculus. Mol Genet Genomics 293:417–433CrossRefGoogle Scholar
  29. Fischer NH (1990) In: Towers GHN, Stafford HA (eds) Biochemistry of the mevalonic acid pathway to terpenoids. Plenum Press, New YorkGoogle Scholar
  30. Fissore E, Santo Domingo C, Pujol C, Damonte E, Am Rojas, Gerschenson LN (2014) Upgrading of residues of bracts, stems and hearts of Cynara cardunculus L. var. scolymus to functional fractions enriched in soluble fiber. Food Funct 5:463–470CrossRefGoogle Scholar
  31. Fritsche J, Beindorff CM, Dachtler M, Zhang H, Lammers JG (2002) Isolation, characterization and determination of minor artichoke (Cynara scolymus L.) leaf extract compounds. Eur Food Res Technol 215:149–157CrossRefGoogle Scholar
  32. Gaquerel E, Kotkar H, Onkokesung N, Galis I, Baldwin IT (2013) Silencing an N-acyltransferase-like involved in lignin biosynthesis in Nicotiana attenuata dramatically alters herbivory-induced phenolamide metabolism. PLoS ONE 8:5CrossRefGoogle Scholar
  33. Gebhardt R (1998) Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extracts. J Pharmacol Exp Ther 286:1122–1128Google Scholar
  34. Ha TJ, Jang DS, Lee JR, Lee KD, Lee J, Hwang SW, Jung HJ, Nam SH, Park KH, Yang MS (2003) Cytotoxic effects of sesquiterpene lactones from the flowers of Hemisteptia lyrata B. Arch Pharmacal Res 26:925–928CrossRefGoogle Scholar
  35. Hay AJ, Hamburger M, Hostettmann K, Hoult JRS (1994) Toxic inhibition of smooth muscle contractility by plant-derived sesquiterpenes caused by their chemically reactive α-methylenebutyrolactone functions. Br J Pharmacol 112:9–12PubMedCentralCrossRefPubMedGoogle Scholar
  36. Hellwege EM, Gritscher D, Willmitzer L, Heyer AG (1997) Transgenic potato tubers accumulate high levels of 1-kestose and nystose: functional identification of a sucrose sucrose 1-fructosyltransferase of artichoke (Cynara scolymus) blossom discs. Plant J 12:1057–1065CrossRefGoogle Scholar
  37. Hellwege EM, Raap M, Gritscher D, Willmitzer L, Heyer AG (1998) Differences in chain length distribution of inulin from Cynara scolymus and Helianthus tuberosus are reflected in a transient plant expression system using the respective 1-FFT cDNAs. FEBS Lett 427:25–28CrossRefGoogle Scholar
  38. Hellwege EM, Czapla S, Jahnke A, Willmitzer L, Heyer AG (2000) Transgenic potato (Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus) roots. PNAS 97:8699–8704CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ishida K, Kojima R, Tsuboi M, Tsuda Y, Ito M (2010) Effects of artichoke leaf extract on acute gastric mucosal injury in rats. Biol Pharm Bull 33:223–229CrossRefGoogle Scholar
  40. IUPAC Commission on the Nomenclature of Organic Chemistry (CNOC) and IUPAC-IUB Commission on Biochemical Nomenclature (CBN) (1976) Nomenclature of cyclitols, recommendations. Biochem J 153:23–31Google Scholar
  41. Lattanzio V, Morone I (1979) Variations of the orthodiphenol content in Cynara scolymus L. during the plant growing season. Experientia 35:993–994CrossRefGoogle Scholar
  42. Lattanzio V, Linsalata V, Palmieri S, Van Sumere CF (1989) The beneficial effect of citric and ascorbic acid on the phenolic browning reaction in stored artichoke (Cynara scolymus L.) heads. Food Chem 33:93–106CrossRefGoogle Scholar
  43. Lattanzio V, Cardinali A, Di Venere D, Linsalata V, Palmieri S (1994a) Browning phenomena in stored artichoke (Cynara scolymus L.) heads: enzymic or chemical reactions? Food Chem 50:1–7CrossRefGoogle Scholar
  44. Lattanzio V, De Cicco V, Di Venere D, Lima M, Salerno M (1994b) Antifungal activity of phenolics against different storage fungi. Ital J Food Sci 6(1):23–30Google Scholar
  45. Lattanzio V, Di Venere D, Linsalata V, Bertolini P, Ippolito A, Salerno M (2001) Low temperature metabolism of apple phenolics and quiescence of Phlyctaena vagabonda. J Agric Food Chem 49(12):5817–5821CrossRefGoogle Scholar
  46. Lattanzio V, Cicco N, Linsalata V (2005) Antioxidant activities of artichoke phenolics. Acta Hort 681:421–428CrossRefGoogle Scholar
  47. Lattanzio V, Kroon PA, Linsalata V, Cardinali A (2009) Globe artichoke: a functional food and source of nutraceutical ingredients. J Funct Foods 1:131–144CrossRefGoogle Scholar
  48. Lattanzio V, Cardinali A, Linsalata V (2012) Plant phenolics: a biochemical and physiological perspective. In: Cheynier V, Sarni-Manchado P, Quideau S (eds) Recent advances in polyphenols research, vol 3. Wiley-Blackwell Publishing, Oxford, UK, pp 1–39Google Scholar
  49. Lattanzio V (2013) Phenolic compounds: introduction. In: Ramawat KG, Merillon JM (eds) Handbook of natural products. Springer, Berlin, pp 1543–1580CrossRefGoogle Scholar
  50. Lattanzio V, Caretto S, Linsalata V, Colella G, Mita G (2018) Signal transduction in artichoke [Cynara cardunculus L. subsp. scolymus (L.) Hayek] callus and cell suspension cultures under nutritional stress. Plant Physiol Biochem 127:97–103CrossRefGoogle Scholar
  51. Lattanzio V, van Sumere CF (1987) Changes in phenolic compounds during the development and cold storage of artichoke (Cynara scolymus L.) heads. Food Chem 24:37–50CrossRefGoogle Scholar
  52. Marković S, Tošović J (2016) Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids. Food Chem 210:585–592. Scholar
  53. Menin B, Comino C, Moglia A, Dolzhenko Y, Portis E, Lanteri S (2010) Identification and mapping of genes related to caffeoylquinic acid synthesis in Cynara cardunculus L. Plant Sci 179:338–347CrossRefGoogle Scholar
  54. Menin B, Comino C, Portis E, Moglia A, Cankar K, Bouwmeester H, Lanteri S, Beekwilder J (2012) Genetic mapping characterization of the globe artichoke (+)-germacrene A synthase gene, encoding the first dedicated enzyme for biosynthesis of the bitter sesquiterpene lactone cynaropicrin. Plant Sci 190:1–8CrossRefGoogle Scholar
  55. Mensink MA, Frijlink HW, van der VoortMaarschalk K, Hinrichs WLJ (2015) Inulin, a flexible oligosaccharide. I: Review of its pharmaceutical applications. Carbohyd Polym 130:405–419CrossRefGoogle Scholar
  56. Moglia A, Acquadro A, Eljounaidi K, Milani AM, Cagliero C, Rubiolo P, Genre A, Cankar K, Beekwilder J, Comino C (2016) Genome-wide identification of BAHD acyltransferases and in vivo characterization of HQT-like enzymes involved in caffeoylquinic acid synthesis in globe artichoke. Front Plant Sci 7:1424PubMedCentralCrossRefPubMedGoogle Scholar
  57. Moglia A, Comino C, Menin B, Portis E, Acquadro A, Beekwilder J, Hehn A, Bourgaud F, Lanteri S (2013) Caffeoylquinic acids biosynthesis and accumulation in Cynara cardunculus: state of the art. Proc. Acta Hort. 983:401–406CrossRefGoogle Scholar
  58. Moglia A, Comino C, Portis E, Acquadro A, De Vos RCH, Beekwilder J, Lanteri S (2009) Isolation and mapping of a C3’H gene (CYP98A49) from globe artichoke, and its expression upon UV-C stress. Plant Cell 28(6):963–974CrossRefGoogle Scholar
  59. Mudau SP, Steenkamp PA, Piater LA, De Palma M, Tucci M, Madala NE, Dubery IA (2018) Metabolomics-guided investigations of unintended effects of the expression of the hydroxycinnamoyl quinate hydroxycinnamoyltransferase (hqt1) gene from Cynara cardunculus var. scolymus in Nicotiana tabacum cell cultures. Plant Physiol Biochem 127:287–298CrossRefGoogle Scholar
  60. Panizzi L, Scarpati ML (1954) Constitution of cynarine, the active principle of the artichoke. Nature 174:1062–1063CrossRefGoogle Scholar
  61. Panizzi L, Scarpati ML, Oriente G (1955) Sintesi dell’acido clorogenico. Experientia, XI/10:383–384CrossRefGoogle Scholar
  62. Panizzi L, Scarpati ML (1965) Sugli acidi 1, 4- e 1, 5-dicaffeilchinici. Gazz Chim Ital 95:71–82Google Scholar
  63. Picman AK (1986) Biological activities of sesquiterpene lactones. Biochem Syst Ecol 14:255–281CrossRefGoogle Scholar
  64. Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weisbeek PJ, Smeekens SCM (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130PubMedCentralCrossRefPubMedGoogle Scholar
  65. Puangpraphant S, Berhow MA, Vermillion K, Potts G, Gonzalez de Mejia E (2011) Dicaffeoylquinic acids in Yerba mate (Ilex paraguariensis St. Hilaire) inhibit NF-κB nucleus translocation in macrophages and induce apoptosis by activating caspases-8 and -3 in human colon cancer cells. Mol Nutr Food Res 55:1509–1522. Scholar
  66. Roberfroid MB, Delzenne NM (1998) Dietary fructans. Annu Rev Nutr 18:117–143CrossRefGoogle Scholar
  67. Roberfroid MB (2007) Inulin-type fructans: functional food ingredients. J Nutr 137:2493S–2502SCrossRefGoogle Scholar
  68. Rodriguez E, Towers GHN, Mitchell JC (1976) Biological activities of sesquiterpene lactones. Phytochemistry 15:1573–1580CrossRefGoogle Scholar
  69. Roller M, Rechkemmer G, Watzl B (2004) Prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis modulates intestinal immune functions in rats. J Nutr 134(153–156):2004Google Scholar
  70. Rozema J, van de Staaij J, Bjorn LO, Caldwell MM (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28CrossRefGoogle Scholar
  71. Ruíz-Cano D, Pérez-Llamas F, Frutos MJ, Arnao MB, Espínosa C, López-Jiménez JA, Castillo J, Zamora S (2014) Chemical and functional properties of the different byproducts of artichoke (Cynara scolymus L.) from industrial canning process. Food Chem 160:34–140CrossRefGoogle Scholar
  72. Rumessen JJ, Bode S, Hamberg O, Gudman-Hoyer E (1990) Fructans of Jerusalem artichokes: intestinal transport, absorption, fermentation and influence on blood glucose, insulin and C-peptide in healthy subjects. Am J Clin Nutr 52:675–681CrossRefGoogle Scholar
  73. Sánchez-Rabaneda F, Jáuregui O, Lamuela-Raventós RM, Bastida J, Viladomat F, Codina C (2003) Identification of phenolic compounds in artichoke waste by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1008:57–72CrossRefGoogle Scholar
  74. Scarpati ML, Oriente G, Panizzi L (1957) Sui costituenti caffeici nel carciofo. Anal Chim 47:150–154Google Scholar
  75. Scarpati ML, Esposito P (1963) Neochlorogenic acid and ‘‘band 510’’ structure. Tetrahedron Lett 18:1147–1150CrossRefGoogle Scholar
  76. Schneider G, Thiele K (1974) Die Verteilung des Bitter-stoffes Cynaropicrin in der Artischocke. Planta Med 26:174–183CrossRefGoogle Scholar
  77. Schütz K, Kammerer D, Carle R, Schieber A (2004) Identification and quantification of caffeoylquinic acids and flavonoids from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC-DAD-ESI/MSn. J Agric Food Chem 52:4090–4096CrossRefGoogle Scholar
  78. Schütz K, Persike M, Carle R, Schieber A (2006) Characterization and quantification of anthocyanins inselected artichoke (Cynara scolymus L.) cultivars by HPLC-DAD ESI-MSn. Anal Bioanal Chem 384:511–1517CrossRefGoogle Scholar
  79. Seto M, Miyase T, Umehara K, Ueno A, Hirano Y, Otani N (1988) Sesquiterpene lactones from Cichorium endivia L. and C. intybus L. and cytotoxic activity. Chem Pharm Bull 36:2423–2429CrossRefGoogle Scholar
  80. Shimoda H, Ninomiya K, Nishida N, Yoshino T, Morikawa T, Matsuda H et al (2003) Anti-hyperlipidemic sesquiterpenes and new sesquiterpene glycosides from the leaves of artichoke (Cynara scolymus L.): structure requirement and mode of action. Bioorganic Med. Chem. Lett. 13:223–228CrossRefGoogle Scholar
  81. Slanina J, Taborska E, Bochorakova H, Slaninova I, Humpa O, Robinson W, Schram K (2001) New and facile method of preparation of the anti-HIV-1 agent, 1, 3-dicaffeoylquinic acid. Tetrahedron Lett 42:3383–3385. Scholar
  82. Sonnante G, D’Amore R, Blanco E, Pierri CL, De Palma M, Luo J, Tucci M, Martin C (2010) Novel hydroxycinnamoyl-Coenzyme A quinate transferase genes from artichoke are involved in the synthesis of chlorogenic acid. Plant Physiol 153(3):1224–1238PubMedCentralCrossRefPubMedGoogle Scholar
  83. Suchy M, Herout V, Šorm F (1960) Terpenes. CXVI. Structure of cynaropicrin. Collect Czech Chem Commun 25:2777–2782CrossRefGoogle Scholar
  84. Tanaka YT, Tanaka K, Kojima H, Hamada T, Masutani T, Tsuboi M, Akao Y (2012) Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B. Bioorg Med Chem Lett 23(2):518–523CrossRefGoogle Scholar
  85. Tomas-Barberan F, Garcia-Villalba R, Quartieri A, Raimondi S, Amaretti A, Leonardi A, Rossi M (2014) In vitro transformation of chlorogenic acid by human gut microbiota. Mol Nutr Food Res 58:1122–1131CrossRefGoogle Scholar
  86. Towers GHN, Abeysekera B (1984) Cell wall hydroxycinnamate esters as UV-A receptors in phototropic responses of higher plants—a new hypothesis. Phytochemistry 23(5):951–952CrossRefGoogle Scholar
  87. Usuki T, Sato M, Hara S, Yoshimoto Y, Kondo R, Zimmermann S, Kaiser M, Brun R, Hamburger M, Adams M (2014) Antitrypanosomal structure-activity-relationship study of synthetic cynaropicrin derivatives. Bioorg Med Chem Lett 24:794–798CrossRefGoogle Scholar
  88. Van Beek TA, Maas P, King BM, Leclercq E, Voragen AG, De Groot A (1990) Bitter sesquiterpene lactones from chicory roots. J Agric Food Chem 38:1035–1038CrossRefGoogle Scholar
  89. Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 20:351–359CrossRefGoogle Scholar
  90. Wang Y, Hamburger M, Cheng CH, Costall B, Naylor RJ, Jenner P, Hostettmann K (1991) Neurotoxic sesquiterpenoids from the yellow star thistle Centaurea solstitialis L. (Asteraceae). Helv Chim Acta 74:117–123CrossRefGoogle Scholar
  91. Yamada K, Ishii Y, Takeda T, Kuroki H, Mitoma C, Uchi H et al (2015) Effect of cynaropicrin on 2,3,4,7,8-pentachlorodibenzofuran-induced wasting syndrome and oxidative stress. Fukuoka Igaku Zasshi 106:169–175Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vincenzo Lattanzio
    • 1
  • Cinzia Comino
    • 2
  • Andrea Moglia
    • 2
  • Sergio Lanteri
    • 2
    Email author
  1. 1.Department of Sciences of Agriculture, Food and EnvironmentUniversity of FoggiaFoggiaItaly
  2. 2.DISAFA, Plant Genetics and BreedingUniversity of TorinoGrugliasco, TorinoItaly

Personalised recommendations