Advertisement

Cynara cardunculus as a Multiuse Crop

  • Giovanni Mauromicale
  • Gaetano Roberto Pesce
  • Maria Dolores Curt
  • Jesús Fernández
  • Javier González
  • Jorge Gominho
  • Rafael Tabla
  • Isidro Roa
  • Ezio PortisEmail author
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

The main use of Cynara cardunculus L. is food, but there are also alternative uses, of which this chapter gives an overview. All the possible alternative uses of C. cardunculus have emerged only in recent decades, with the exception of the florets as vegetable rennet, which has a very ancient tradition behind it. The need for renewable energy sources has led to studying C. cardunculus as an energy plant, from which biomass for direct combustion, biomethane, bio-ethanol and oil can be obtained. The latter is also suitable for human consumption. The aboveground biomass could also provide fiber for paper pulp production, as well as various livestock feed resources. The chapter, lastly, includes the above-mentioned use as vegetable rennet and the possible use as an ornamental plant.

Keywords

Biomass Biomethane Bio-ethanol Seed oil Animal feeding Paper pulp Vegetable rennet Ornamental plants 

References

  1. Abrantes S, Amaral ME, Costa AP, Duarte AP (2007) Cynara cardunculus L. alkaline pulps: alternatives fibres for paper and paperboard production. Bioresour Technol 98:2873–2878CrossRefPubMedGoogle Scholar
  2. Alexandre AMRC, Dias AMA, Seabra IJ, Portugal AATG, de Sousa HC, Braga MEM (2012) Biodiesel obtained from supercritical carbon dioxide oil of Cynara cardunculus L. J Supercrit Fluids 68:52–63CrossRefGoogle Scholar
  3. Amira AB, Bauwens J, Pauw ED, Besbes S, Attia H, Francis F, Blecker C (2017a) Identification of proteins from wild cardoon flowers (Cynara cardunculus L.) by a proteomic approach. J Chem Biol 10:25–33CrossRefPubMedGoogle Scholar
  4. Amira AB, Makhlouf I, Flaviu Petrut R, Francis F, Bauwens J, Attia H, Besbes S, Blecker C (2017b) Effect of extraction pH on techno-functional properties of crude extracts from wild cardoon (Cynara cardunculus L.) flowers. Food Chem 225:258–266CrossRefPubMedGoogle Scholar
  5. Angelini LG, Ceccarini L, Nassi o Di Nasso N, Bonari E (2009) Long-term evaluation of biomass production and quality of two cardoon (Cynara cardunculus L.) cultivars for energy use. Biomass Bioenergy 33(5):810–816CrossRefGoogle Scholar
  6. Antunes A, Amaral E, Belgacem MN (2000) Cynara cardunculus L.: chemical composition and soda-anthraquinone cooking. Ind Crops Prod 12:85–91CrossRefGoogle Scholar
  7. Archontoulis SV, Danalatos NG, Struik PC, Batzogiannis D, Savas V (2010a) The effect of nitrogen fertilization and supplemental irrigation on seed and biomass productivity of Cynara cardunculus growing in a semi-arid environment in Central Greece. In: Proceedings of the 18th European biomass conference and exhibition, Lyon, France, pp 273–279Google Scholar
  8. Archontoulis SV, Struik PC, Yin X, Bastiaans L, Vos J, Danalatos NG (2010b) Inflorescence characteristics, seed composition, and allometric relationships predicting seed yields in the biomass crop Cynara cardunculus. GCB Bioenergy 2:113–129Google Scholar
  9. Ballesteros M, Negro MJ, Manzanares P, Ballesteros I, Sáez F, Oliva JM (2007) Fractionation of Cynara cardunculus (Cardoon) biomass by dilute-acid pretreatment. Appl Biochem Biotechnol 137:239–252PubMedPubMedCentralGoogle Scholar
  10. Barbosa M, Valles E, Vassal L, Mocquot G (1976) L’utilisation d’extrait de Cynara cardunculus L. comme agent coagulant en fabrication de fromages à pâte molle et à pâte cuite. Lait 56:1–17CrossRefGoogle Scholar
  11. Barros RM, Malcata FX (2006) Molecular characterization of peptides released from beta-lactoglobulin and alpha-lactalbumin via cardosins A and B. J Dairy Sci 89:483–494CrossRefPubMedGoogle Scholar
  12. Beck GR (1891) Versuch einer neuen classification der früchte. Verh Zool Bot Ges Wien 41:307–312Google Scholar
  13. Benjelloun-Mlayah B, de Lopez S, Delmas M (1997) Oil and paper pulp from Cynara cardunculus: preliminary results. Ind Crops Prod 6:233–236CrossRefGoogle Scholar
  14. Bentsen NS, Felby C (2012) Biomass for energy in the European Union—a review of bioenergy resource assessments. Biotechnol Biofuels 5(1):25CrossRefPubMedPubMedCentralGoogle Scholar
  15. Berglund M, Börjesson P (2006) Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy 30(3):254–266CrossRefGoogle Scholar
  16. Berridge NJ (1945) The purification and crystallization of rennin. Biochem J 39:179–186CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bolohan C, Marin DI, Mihalache M, Ilie L, Oprea AC (2014) Total biomass and grain production of Cynara cardunculus L. species grown under the conditions of south easter Romania. Agro Life Sci J 3(1):31–34Google Scholar
  18. Bouriazos A, Ikonomakou E, Papadogianakis G (2014) Aqueous-phase catalytic hydrogenation of methyl esters of Cynara cardunculus alternative low-cost non-edible oil: a useful concept to resolve the food, fuel and environment issue of sustainable biodiesel. Ind Crops Prod 52:205–210CrossRefGoogle Scholar
  19. Brodelius PE, Cordeiro M, Mercke P, Domingos A, Clemente A, Pais MS (1998) Molecular cloning of aspartic proteinases from flowers of Cynara cardunculus subsp. flavescens cv. cardoon and Centaurea calcitrapa. Adv Exp Med Biol 436:435–439CrossRefPubMedGoogle Scholar
  20. Cáceres P, Fernández I (2000) Proceso de obtención de extractos en polvo de un coagulante de leche procedente de las flores del cardo Cynara sp. Spanish patent ES 2 139 550 A1Google Scholar
  21. Cajarville C, González J, Repetto JL, Rodríguez CA, Martinez A (1999) Nutritive value of green forage and crop by-products of Cynara cardunculus. Ann Zootech 8:353–365CrossRefGoogle Scholar
  22. Cajarville C, González J, Repetto JL, Alvir MR, Rodríguez CA (2000) Nutritional valuation of cardoon (Cynara cardunculus) seed for ruminants. Anim Feed Sci Technol 87:203–214CrossRefGoogle Scholar
  23. Carvalho IS, Miranda I, Pereira H (2006) Evaluation of oil composition of some crops suitable for human nutrition. Ind Crops Prod 24:75–78CrossRefGoogle Scholar
  24. Castejón D, Herrera A, Heras Á, Cambero I, Mateos-Aparicio I (2017) Oil quality control of culinary oils subjected to deep-fat frying based on NMR and EPR spectroscopy. Food Anal Methods 10(7):2467–2480CrossRefGoogle Scholar
  25. Cavalli SV, Lufrano D, Colombo ML, Priolo N (2013) Properties and applications of phytepsins from thistle flowers. Phytochemistry 92:16–32CrossRefGoogle Scholar
  26. Cocker H (1967) Il carciofo pianta ornamentale. In: I international congress on artichoke. Edizioni Minerva Medica, Torino, pp 313–317Google Scholar
  27. Cordeiro MC, Jakob E, Puhan Z, Pais MS, Brodelius PE (1992) Milk clotting and proteolytic activities of purified cynarases from Cynara cardunculus—a comparison to chymosin. Milchwissenschaft 47:683–700Google Scholar
  28. CORDIS-JOUB0030 (1990) Production and utilization of Cynara cardunculus L. biomass for energy, paper-pulp and food industry. Project ID: JOUB0030 (WWW document). http://cordis.europa.eu/project/rcn/237_en.html
  29. Cotana F, Cavalaglio G, Gelosia M, Coccia V, Petrozzi A, Ingles D, Pompili E (2015) A comparison between SHF and SSSF processes from cardoon for ethanol production. Ind Crops Prod 69:424–432CrossRefGoogle Scholar
  30. Cravero VP, Picardi LA, Cointry EL (2005) An approach for understanding the heredity of two quality traits (head color and tightness) in globe artichoke (Cynara scolymus L.). Genet Mol Biol 28(3):431–434CrossRefGoogle Scholar
  31. Curt MD, Sánchez G, Fernández J (2002) The potential of Cynara cardunculus L. for seed oil production in a perennial cultivation system. Biomass Bioenergy 23:33–46CrossRefGoogle Scholar
  32. Curt MD, Sánchez G, Fernández J (2005) Cynara cardunculus L. as a source of silymarin. Acta Hortic 681:461–467CrossRefGoogle Scholar
  33. Curt MD, Sanz M, Aguado PL, Sánchez G, Fernández J (2010) Performance of cardoon oilseed cake in soil substrates. In: Proceedings of the 18th European biomass conference and exhibition, Lyon, France, pp 207–211Google Scholar
  34. Curt MD, Martínez I, Sanz M, Lourenço A, Gominho J, González J, Fernández J (2014) Potential of four selected clones of Cynara cardunculus L. for oil production. In: Proceedings of the 22nd European biomass conference and exhibition, Hamburg, Germany, pp 274–279Google Scholar
  35. Dahl J, Obernberger I. (2004) Evaluation of the combustion characteristics of four perennial energy crops (Arundo donax, Cynara cardunculus, Miscanthus × giganteus and Panicum virgatum). In: 2nd world conference on biomass for energy, industry and climate protection, Rome, Italy, pp 1265–1270Google Scholar
  36. Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A (2011) Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol 102(10):6230–6238CrossRefPubMedPubMedCentralGoogle Scholar
  37. De Menna F, Malagnino RA, Vittuari M, Molari G, Seddaiu G, Deligios PA, Solinas S, Ledda L (2016) Potential biogas production from artichoke byproducts in Sardinia, Italy. Energies 9:1–11CrossRefGoogle Scholar
  38. De Wit M, Londo M, Faaij A (2011) Productivity developments in European agriculture: relations to and opportunities for biomass production. Renew Sustain Energy Rev 15(5):2397–2412CrossRefGoogle Scholar
  39. Del Campo I, Alegria I, Zazpe M, Echeverria M, Echeverría I (2006) Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production. Ind Crops Prod 24(3):214–221CrossRefGoogle Scholar
  40. Delgado I, Ochoa MJ, Muñoz F, Albiol A (2005) Aprovechamiento invernal para forraje de un cultivo de cardo (Cynara cardunculus L.) y valoración de su incidencia sobre la producción de biomasa. In: Producciones agroganaderas: Gestión eficiente y conservación del medio natural. XLV Reunión Científica de la SEEP, Gijón, España, vol II, pp 601–607Google Scholar
  41. Delgado FJ, Rodríguez J, González J, Ramírez R, Roa I (2010) Proteolysis and texture changes of a Spanish soft cheese (‘Torta del Casar’) manufactured with raw ewe milk and vegetable rennet during ripening. Int J Food Sci Technol 45:512–519CrossRefGoogle Scholar
  42. Dressler D, Loewen A, Nelles M (2012) Life cycle assessment of the supply and use of bioenergy: impact of regional factors on biogas production. Int J Life Cycle Assess 17(9):1104–1115CrossRefGoogle Scholar
  43. Duca D, Toscano G, Riva G, Mengarelli C, Rossini G, Pizzi A, Del Gatto A, Foppa Pedretti E (2015) Quality of residues of the biodiesel chain in the energy field. Ind Crops Prod 75:91–97CrossRefGoogle Scholar
  44. Ek M, Gellerstedt G, Henriksson G (2009) Pulp and paper chemistry and technology. In: Pulping chemistry and technology, vol 2. Walter de GruyterGoogle Scholar
  45. Environmental Protection Agency (2012) Global anthropogenic non-CO2 greenhouse gas emissions: 1990–2030. EPA 430-R-12-006, Dec 2012. Office of Atmospheric Programs Climate Change Division U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  46. Fabbri A, Serranti S, Bonifazi G (2014) Biochemical methane potential (BMP) of artichoke waste: the inoculum effect. Waste Manag Res 32:207–214CrossRefPubMedPubMedCentralGoogle Scholar
  47. Fernandes MC, Ferro MD, Paulino AFC, Mendes JAS, Gravitis J, Evtuguin DV, Xavier AMRB (2015) Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresour Technol 186:309–315CrossRefGoogle Scholar
  48. Fernandes MC, Ferro MD, Paulino AFC, Chaves HT, Evtuguin DV, Xavier AMRB (2018) Comparative study on hydrolysis and bioethanol production from cardoon and rockrose pretreated by dilute acid hydrolysis. Ind Crops Prod 111:633–641CrossRefGoogle Scholar
  49. Fernández J, Curt MD (2004) Low-cost biodiesel from cynara oil. In: Van Swaaij WP, Fjällström T, Helm P, Grassi A (eds) Proceedings of the 2nd world conference and exhibition on biomass for energy, industry and climate protection. ETA-Florence & WIP-Munich, Rome, Italy, pp 109–112Google Scholar
  50. Fernández J, Curt MD (2005) State-of-the-art of Cynara cardunculus as an energy crop. In: Sjunnesson L, Carrasco JE, Helm P, Grassi A (eds) Proceedings of the 14th European biomass conference, biomass for energy, industry and climate protection. ETA-Florence and WIP-Munich, Paris, France, pp 22–27Google Scholar
  51. Fernández J, Manzanares P (1989) Cynara cardunculus L., a new crop for oil, paper pulp and energy. In: 5th European conference on biomass for energy and industry. Elsevier Applied Science, Lisbon, pp 1184–1189Google Scholar
  52. Fernández J, Hidalgo M, del Monte JP, Curt MD (2005) Cynara cardunculus L. as a perennial crop for non-irrigated lands: yields and applications. Acta Hortic 681:109–116CrossRefGoogle Scholar
  53. Fernández J, Curt MD, Aguado PL (2006) Industrial applications of Cynara cardunculus L. for energy and other uses. Ind Crops Prod 24:222–229CrossRefGoogle Scholar
  54. Fernández J, Curt MD, Sanz M, Escudero A (2007) Biomass partitioning of cynara as a function of the plant height. In: Maniatis K, Grimm HP, Helm P, Grassi A (eds) Proceedings of the 15th European biomass conference. ETA-Renewable Energies & WIP-Renewable Energies, Berlin, Germany, pp 654–656Google Scholar
  55. Fernández-Salguero J, Gómez R, Tejada L, Vioque M (2002a) Un coagulante vegetal en polvo, procedimiento para su preparación y sus aplicaciones en la fabricación de quesos. Spanish patent ES 2 166 719 A1Google Scholar
  56. Fernández-Salguero J, Tejada L, Gómez R (2002b) Use of powdered vegetable coagulant in the manufacture of ewe’s milk cheeses. J Sci Food Agric 82:464–468CrossRefGoogle Scholar
  57. Ferreira-Dias S, Gominho J, Baptista I, Pereira H (2018) Pattern recognition of cardoon oil from different large-scale trials. Ind Crop Prod 118:236–245CrossRefGoogle Scholar
  58. Fike JH, Parrish DJ, Wolf DD, Balasko JA, Green JT Jr, Rasnake M, Reynolds JH (2006) Long-term yield potential of switchgrass-for-biofuel systems. Biomass Bioenergy 30(3):198–206CrossRefGoogle Scholar
  59. Foti S, Mauromicale G, Raccuia SA, Fallico B, Fanella F, Maccarone E (1999) Possible alternative utilization of Cynara spp. I. Biomass, grain yield and chemical composition of grain. Ind Crops Prod 10(3):219–228CrossRefGoogle Scholar
  60. Francaviglia R, Bruno A, Falcucci M, Farina R, Renzi G, Russo DE, Sepe L, Neri U (2016) Yields and quality of Cynara cardunculus L. wild and cultivated cardoon genotypes. A case study from a marginal land in Central Italy. Eur J Agron 72:10–19CrossRefGoogle Scholar
  61. Gaya P, Carrera E, Medina M, Nuñez M (1999) Formation of hydrophobic peptides during the manufacture of ewe’s milk Manchego cheese using different milk coagulants. Milchwissenchaft 54:556–558Google Scholar
  62. Genovese C, Platania C, Venticinque M, Calderaro P, Argento S, Scandurra S, Raccuia SA (2016) Evaluation of cardoon seeds presscake for animal feeding. Acta Hortic 1147:323–328CrossRefGoogle Scholar
  63. Gherbin P, Monteleone M, Tarantino E (2001) Five year evaluation on cardoon (Cynara cardunculus L. var. altilis) biomass production in a Mediterranean environment. Ital J Agron 5(1–2):11–19Google Scholar
  64. Gómez R, Sánchez E, Vioque M, Ferreira J, Tejada L, Fernández-Salguero J (2001) Microbiological characteristics of ewes’ milk cheese manufactured using aqueous extracts of flowers from various species of cardoon Cynara L. Milchwissenschaft 56:16–19Google Scholar
  65. Gominho J, Pereira H (2000) An overview of the research on pulping aptitude of Cynara cardunculus L. In: Kyritsis S (ed) 1st world conference on biomass for energy and industry. James & James, Sevilla, pp 1187–1190Google Scholar
  66. Gominho J, Pereira H (2006) Influence of raw-material and process variables in the kraft pulping of Cynara cardunculus L. Ind Crops Prod 24:160–165CrossRefGoogle Scholar
  67. Gominho J, Fernandez J, Pereira H (2001) Cynara cardunculus L.—a new fibre crop for pulp and paper production. Ind Crops Prod 13:1–10CrossRefGoogle Scholar
  68. Gominho J, Lourenço A, Curt MD, Fernández J, Pereira H (2009) Characterization of hairs and pappi from Cynara cardunculus capitula and their suitability for paper production. Ind Crops Prod 29:116–125CrossRefGoogle Scholar
  69. Gominho J, Lourenço A, Palma P, Lourenço ME, Curt MD, Fernández J, Pereira H (2011) Large scale cultivation of Cynara cardunculus L. for biomass production—a case study. Ind Crop Prod 33:1–6CrossRefGoogle Scholar
  70. Gominho J, Curt MD, Lourenço A, Fernández J, Pereira H (2018) Cynara cardunculus L. as a biomass and multi-purpose crop: a review of 30 years of research. Biomass Bioenergy 109:257–275CrossRefGoogle Scholar
  71. González JF, González-Garcı́a CM, Ramiro A, González J, Sabio E, Gañán J, Rodrı́guez MA (2004) Combustion optimisation of biomass residue pellets for domestic heating with a mural boiler. Biomass Bioenergy 27(2):145–154CrossRefGoogle Scholar
  72. González J, Matías L, Royano L, Cabanillas J (2011) Seed production of Cynara cardunculus L. cultivars selected in south western Spain. In: Proceedings of the 19th European biomass conference and exhibition, Berlin, Germany, pp 757–760Google Scholar
  73. Grammelis P, Malliopoulou A, Basinas P, Danalatos NG (2008) Cultivation and characterization of Cynara cardunculus for solid biofuels production in the Mediterranean region. Int J Mol Sci 9(7):1241–1258CrossRefPubMedPubMedCentralGoogle Scholar
  74. Heimgartner U, Pietrzak M, Geertsen R, Brodelius P, Silva-Figueiredo AC, Pais MSS (1990) Purification and partial characterization of milk clotting proteases from flowers of Cynara cardunculus. Phytochemistry 29:1405–1410CrossRefGoogle Scholar
  75. Ierna A, Mauromicale G (2010) Cynara cardunculus L. genotypes as a crop for energy purposes in a Mediterranean environment. Biomass Bioenergy 34(5):754–760CrossRefGoogle Scholar
  76. Ierna A, Mauro RP, Mauromicale G (2012) Biomass, grain and energy yield in Cynara cardunculus L. as affected by fertilization, genotype and harvest time. Biomass Bioenergy 36:404–410CrossRefGoogle Scholar
  77. INRA—Institut National de la Recherche Agronomique (2007) Alimentation des bovins, ovins et caprins: besoins des animaux—valeurs des aliments—tables INRA 2007. Editions Quae, INRA, VersaillesGoogle Scholar
  78. Kalamaras SD, Kotsopoulos TA (2014) Anaerobic co-digestion of cattle manure and alternative crops for the substitution of maize in South Europe. Bioresour Technol 172:68–75CrossRefPubMedGoogle Scholar
  79. Karampinis E, Nikolopoulos N, Nikolopoulos A, Grammelis P, Kakaras E (2012) Numerical investigation Greek lignite/cardoon co-firing in a tangentially fired furnace. Appl Energy 97:514–524CrossRefGoogle Scholar
  80. Lag-Brotons A, Gómez I, Navarro-Pedreño J, Mayoral AM, Curt MD (2014) Sewage sludge compost use in bioenergy production—a case study on the effects on Cynara cardunculus L. energy crop. J Clean Prod 79:32–40CrossRefGoogle Scholar
  81. Lanteri S, Acquadro A, Comino C, Mauro R, Mauromicale G, Portis E (2006) A first linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, S-SAP, M-AFLP and microsatellite markers. Theory Appl Genet 112(8):1532–1542CrossRefPubMedGoogle Scholar
  82. Lanteri S, Portis E, Acquadro A, Mauro RP, Mauromicale G (2012) Morphology and SSR fingerprinting of newly developed Cynara cardunculus genotypes exploitable as ornamentals. Euphytica 184:311–321CrossRefGoogle Scholar
  83. Lapuerta M, Armas O, Ballesteros R, Fernández J (2005) Diesel emissions from biofuels derived from Spanish potential vegetable oils. Fuel 84:773–780CrossRefGoogle Scholar
  84. Ligero P, Villaverde JJ, Vega A, Bao M (2007) Acetosolv delignification of depithed cardoon (Cynara cardunculus) stalks. Ind Crops Prod 25:294–300CrossRefGoogle Scholar
  85. Ligero P, Villaverde JJ, Vega A, Bao M (2008) Pulping cardoon (Cynara cardunculus) with peroxyformic acid (MILOX) in one single stage. Bioresour Technol 99:5687–5693CrossRefPubMedGoogle Scholar
  86. Lopez Anido FS, Firpo IT, García SM, Cointry EL (1998) Estimation of genetic parameters for yield traits in globe artichoke (Cynara scolymus L.). Euphytica 103:61–66CrossRefGoogle Scholar
  87. Lourenço A, Gominho J, Curt MD, Revilla E, Villar JC, Pereira H (2017) Steam explosion as a pretreatment of Cynara cardunculus prior to delignification. Ind Eng Chem Res 56:424–433CrossRefGoogle Scholar
  88. Maccarone E, Fallico B, Fanella F, Mauromicale G, Raccuia SA, Foti S (1999) Possible alternative utilization of Cynara spp. II. Chemical characterization of their grain oil. Ind Crops Prod 10:229–237CrossRefGoogle Scholar
  89. Macedo IQ, Faro CJ, Pires EM (1996) Caseinolytic specificity of cardosin, an aspartic protease from the cardoon Cynara cardunculus L.: action on bovine αs- and β-casein and comparison with chymosin. J Agric Food Chem 44:42–47CrossRefGoogle Scholar
  90. Martínez G, Sánchez N, Encinar JM, González JF (2014) Fuel properties of biodiesel from vegetable oils and oil mixtures. Influence of methyl esters distribution. Biomass Bioenergy 63:22–32CrossRefGoogle Scholar
  91. Marzinek J, De-Paula OC, Oliveira DMT (2008) Cypsela or achene? Refining terminology by considering anatomical and historical factors. Rev Bras Bot 31:549–553CrossRefGoogle Scholar
  92. Mauro RP, Sortino O, Pesce GR, Agnello M, Lombardo S, Pandino G, Mauromicale G (2015) Exploitability of cultivated and wild cardoon as long-term, low-input energy crops. Ital J Agron 10(1):44–46CrossRefGoogle Scholar
  93. Mauromicale G, Ierna A (2000) Characteristics of heads of seed-grown globe artichoke [Cynara cardunculus L. var. scolymus (L.) Fiori] as affected by harvest period, sowing date and gibberellic acid. Agronomie 20(2):197–204CrossRefGoogle Scholar
  94. Mauromicale G, Sortino O, Pesce GR, Agnello M, Mauro RP (2014) Suitability of cultivated and wild cardoon as a sustainable bioenergy crop for low input cultivation in low quality Mediterranean soils. Ind Crops Prod 57:82–89CrossRefGoogle Scholar
  95. Mazorra-Manzano MA, Perea-Gutiérrez TC, Lugo-Sánchez ME, Ramirez-Suarez JC, Torres-Llanez MJ, González-Córdova AF, Vallejo-Cordoba B (2013) Comparison of the milk-clotting properties of three plant extracts. Food Chem 141:1902–1907CrossRefPubMedGoogle Scholar
  96. McSweeney PLH (2007a) Why is the Phe-Met bond of κ-casein so susceptible to rennet action? In: McSweeney PLH (ed) Cheese problems solved. Woodhead Publishing Limited, Abington, pp 52–53Google Scholar
  97. McSweeney PLH (2007b) What enzymes are in rennet. In: McSweeney PLH (ed) Cheese problems solved. Woodhead Publishing Limited, Abington, pp 55–56Google Scholar
  98. Miceli A, De Leo P (1996) Extraction, characterization and utilization of artichoke-seed oil. Bioresour Technol 57:301–302CrossRefGoogle Scholar
  99. Mussatto SI, Dragone G, Guimarães PM, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28(6):817–830CrossRefPubMedGoogle Scholar
  100. Neri U, Pennelli B, Simonetti G, Francaviglia R (2017) Biomass partition and productive aptitude of wild and cultivated cardoon genotypes (Cynara cardunculus L.) in a marginal land of Central Italy. Ind Crop Prod 95:191–201CrossRefGoogle Scholar
  101. Oliet M, Gilarranz M, Domínguez J, Alonso M, Rodríguez F (2005) Ethanol-based pulping from Cynara cardunculus L. J Chem Technol Biotechnol 80:746–753CrossRefGoogle Scholar
  102. Oliveira I, Gominho J, Diberardino S, Duarte E (2012) Characterization of Cynara cardunculus L. stalks and their suitability for biogas production. Ind Crops Prod 40:318–323CrossRefGoogle Scholar
  103. Ordiales E, Benito MJ, Martín A, Casquete R, Serradilla MJ, Córdoba MG (2013) Bacterial communities of the traditional raw ewe’s milk cheese “Torta del Casar” made without the addition of a starter. Food Control 33:448–454CrossRefGoogle Scholar
  104. Ordiales E, Martín A, Benito MJ, Ruiz-Moyano S, Gallardo G, Córdoba MG (2016) Characterisation of the vegetable rennets used for ‘Torta del Casar’ cheesemaking by a protein profile method. Int J Dairy Technol 69:272–281CrossRefGoogle Scholar
  105. Pari L, Alfano V, Acampora A, Del Giudice A, Scarfone A, Sanzone E (2016) Harvesting and separation of different plant fractions in Cynara cardunculus L. In: Barth S, Murphy-Bokern D, Kalinina O, Taylor G, Jones M (eds) Perennial biomass crops for a resource-constrained world. Springer, New York, pp 261–271CrossRefGoogle Scholar
  106. Pesce GR (2017) New products from Cynara cardunculus L. Doctoral thesis, Università degli Studi di Catania. Retrieved from http://archivia.unict.it/handle/10761/4000
  107. Pesce GR, Negri M, Bacenetti J, Mauromicale G (2017) The biomethane, silage and biomass yield obtainable from three accessions of Cynara cardunculus. Ind Crops Prod 103:233–239CrossRefGoogle Scholar
  108. Petropoulos SA, Fernandez A, Calhelha RC, Danalatos N, Barros L, Ferreira ICFR (2018) How extraction method affects yield, fatty acids composition and bioactive properties of cardoon seed oil? Ind Crop Prod 124:459–465CrossRefGoogle Scholar
  109. Pimentel C, Van Der Straeten D, Pires E, Faro C, Rodrigues-Pousada C (2007) Characterization and expression analysis of the aspartic protease gene family of Cynara cardunculus L. FEBS J 274:2523–2539CrossRefPubMedGoogle Scholar
  110. Pires E, Faro C, Macedo I, Esteves C, Morgado J, Veríssimo P, Gomes D (1994) Flor do cardo versus quimosina no fabrico de queijos artesanais. Quim Aliment 54(1):66–68Google Scholar
  111. Pirisi A, Pinna G, Addis M, Piredda G, Mauriello R, De Pascale S, Caira S, Mamone G, Ferranti P, Addeo F, Chianese L (2007) Relationship between the enzymatic composition of lamb rennet paste and proteolytic, lipolytic pattern and texture of PDO Fiore Sardo ovine cheese. Int Dairy J 17:143–156CrossRefGoogle Scholar
  112. Pirzadah TB, Malik B, Kumar M, Rehman RU (2014) Lignocellulosic biomass: as future alternative for bioethanol production. In: Hakeem K, Jawaid M, Rashid U (eds) Biomass and bioenergy. Springer, Cham, pp 145–163Google Scholar
  113. Piscioneri I, Sharma N, Baviello G, Orlandini S (2000) Promising industrial energy crop. Cynara cardunculus: a potential source for biomass production and alternative energy. Energy Convers Manag 41:1091–1105CrossRefGoogle Scholar
  114. Pochard E, Foury C, Chambonner D (1969) Il miglioramento genetico del carciofo. In: Atti del 1° Congresso Internazionale di Studi sul Carciofo. Edizioni Minerva Medica, Torino, pp 117–143Google Scholar
  115. Porceddu E, Dellacecca V, Bianco VV (1976) Classificazione numerica di cultivar di carciofo. In: Atti II Congresso Internazionale Carciofo, Bari. Edizioni Minerva Medica, Torino, pp 1105–1119Google Scholar
  116. Portis E, Acquadro A, Tirone M, Pesce GR, Mauromicale G, Lanteri S (2018) Mapping the genomic regions encoding biomass-related traits in Cynara cardunculus L. Mol Breed 38(5):64CrossRefGoogle Scholar
  117. Poveda P, Tagle JL, Villar JC (1999) Obtencion de pastas al sulfato a partir del cardo (Cynara cardunculus L.). Influencia del troceado sobre la calidad de las pastas. Invest Agrar-Sist R 8:305–318Google Scholar
  118. Prados F, Pino A, Fernández-Salguero J (2007) Effect of a powdered vegetable coagulant from cardoon Cynara cardunculus in the accelerated ripening of Manchego cheese. Int J Food Sci Technol 42:556–561CrossRefGoogle Scholar
  119. Raccuia SA, Melilli MG (2007) Biomass and grain oil yields in Cynara cardunculus L. genotypes grown in a Mediterranean environment. Field Crops Res 101:187–197CrossRefGoogle Scholar
  120. Raccuia SA, Piscioneri I, Sharma N, Melilli MG (2011) Genetic variability in Cynara cardunculus L. domestic and wild types for grain oil production and fatty acids composition. Biomass Bioenergy 35:3167–3173CrossRefGoogle Scholar
  121. Ramalho-Santos M, Pissarra J, Verissimo P, Pereira S, Salema R, Pires E, Faro CJ (1997) Cardosin A, an abundant aspartic proteinase, accumulates in protein storage vacuoles in the stigmatic papillae of Cynara cardunculus L. Planta 203:204–212CrossRefPubMedGoogle Scholar
  122. Riahi M (2015) Effet de l´ajout des graines riches en acides gras insaturés ayant des teneurs en fibres et des niveaux de lignification différents sur la réduction des émissions de méthane chez les ruminants in vitro. M.Sc. thesis, Mediterranean Agronomic Institut of Zaragoza, 57 ppGoogle Scholar
  123. Roa I, González J, Mendiola FJ, Mas M (1999a) Coagulante para leche extraído de Cynara cardunculus, procedimiento para su preparación y sus aplicaciones. Spanish patent ES 2 117 958 B1Google Scholar
  124. Roa I, López MB, Mendiola FJ (1999b) Residual clotting activity and ripening properties of vegetable rennet from Cynara cardunculus in La Serena cheese. Food Res Int 32:413–419CrossRefGoogle Scholar
  125. Romero MJ, Otal J, Lorenzo I, Perez JI (1997) Utilización del cardo (Cynara cardunculus) como forraje de invierno en ganado ovino. Composición química y digestibilidad in vivo. Resultados preliminares. ITEA, vol Extra, 18:46–48Google Scholar
  126. Ros M, Franke-Whittle IH, Morales AB, Insam H, Ayuso M, Pascual JA (2013) Archaeal community dynamics and abiotic characteristics in a mesophilic anaerobic co-digestion process treating fruit and vegetable processing waste sludge with chopped fresh artichoke waste. Bioresour Technol 136:1–7CrossRefPubMedGoogle Scholar
  127. Roseiro LB, Barbosa M, Ames JM, Wilbey RA (2003) Cheesemaking with vegetable coagulants—the use of Cynara L. for the production of ovine milk cheeses. Int J Dairy Technol 56:76–85CrossRefGoogle Scholar
  128. Sarmento AC, Lopes H, Oliveira CS, Vitorino R, Samyn B, Sergeant K, Debyser G, Van Beeumen J, Domingues P, Amado F, Pires E, Domingues RM, Barros MT (2009) Multiplicity of aspartic proteinases from Cynara cardunculus L. Planta 230:429–439CrossRefPubMedGoogle Scholar
  129. Sękara A, Kalisz A, Gruszecki R, Grabowska A, Kunicki E (2015) Globe artichoke—a vegetable, herb and ornamental of value in central Europe: a review. J Hortic Sci Biotechnol 90(4):365–374CrossRefGoogle Scholar
  130. Sengo I, Gominho J, D’Orey L, Martins M, D’Almeida-Duarte E, Pereira H, Ferreira-Dias S (2010) Response surface modeling and optimization of biodiesel production from Cynara cardunculus oil. Eur J Lipid Sci Technol 112:310–320Google Scholar
  131. Sharaf-Eldin MA (2016) The effects of electromagnetic treatments on the growth and palmitic acid content of Cynara cardunculus. JAPS 26(4):1081–1086Google Scholar
  132. Shatalov AA, Pereira H (2011) Biorefinery of energy crop cardoon (Cynara cardunculus L.)—hydrolytic xylose production as entry point to complex fractionation scheme. J Chem Eng Process Technol 2:118Google Scholar
  133. Shatalov AA, Pereira H (2014) Dissolving grade eco-clean cellulose pulps by integrated fractionation of cardoon (Cynara cardunculus L.) stalk biomass. Chem Eng Res Des 92:2640–2648CrossRefGoogle Scholar
  134. Sousa MJ, Malcata FX (1996) Effects of processing conditions on the caseinolytic activity of proteinases from Cynara cardunculus L. Food Sci Technol Int 2:255–263CrossRefGoogle Scholar
  135. Sousa MJ, Malcata FX (1998) Proteolysis of ovine and caprine caseins in solution by enzymatic extracts of Cynara cardunculus. Enzyme Microb Technol 22:305–314CrossRefGoogle Scholar
  136. Sousa MJ, Malcata FX (2002) Advances in the role of a plant coagulant (Cynara cardunculus) in vitro and during ripening of cheeses from several milk species. Lait 82:151–170CrossRefGoogle Scholar
  137. St-Gelais D, Collet PT (2010) Fromage. In: Vignola CL (ed) Science et technologie du lait. Fondation de Technologie Laitière du Québec Inc. Montréal, Presses Internationales Polytechniques, pp 349–415Google Scholar
  138. Tavaria FK, Sousa MJ, Malcata FX (2001) Storage and lyophilization effects of extracts of Cynara cardunculus on the degradation of ovine and caprine caseins. Food Chem 72:79–88CrossRefGoogle Scholar
  139. Troch T, Lefébure É, Baeten V, Colinet F, Gengler N, Sindic M (2017) Cow milk coagulation: process description, variation factors and evaluation methodologies. A review. Biotechnol Agron Soc Environ 21(4):276–287Google Scholar
  140. Vasilakoglou I, Dhima K (2014) Potential of two cardoon varieties to produce biomass and oil under reduced irrigation and weed control inputs. Biomass Bioenergy 63:177–186CrossRefGoogle Scholar
  141. Veríssimo P, Esteves C, Faro C, Pires E (1995) The vegetable rennet of Cynara cardunculus L. contains two proteinases with chymosin and pepsinlike specificities. Biotechnol Lett 17:621–626CrossRefGoogle Scholar
  142. Wellinger A, Murphy JD, Baxter D (2013) Preface. In: Wellinger A, Murphy JD, Baxter D (eds) The biogas handbook: science, production and applications. Woodhead Publishing, pp xxvii–xxviiiGoogle Scholar
  143. Wiesenthal T, Mourelatou A (2006) How much bioenergy can Europe produce without harming the environment? European environmental agency report no 7Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Giovanni Mauromicale
    • 1
  • Gaetano Roberto Pesce
    • 1
  • Maria Dolores Curt
    • 2
  • Jesús Fernández
    • 2
  • Javier González
    • 2
  • Jorge Gominho
    • 3
  • Rafael Tabla
    • 4
  • Isidro Roa
    • 4
  • Ezio Portis
    • 5
    Email author
  1. 1.Di3A (Dipartimento di Agricoltura, Alimentazione e Ambiente)University of CataniaCataniaItaly
  2. 2.Departamento de Producción AgrariaUniversidad Politécnica de MadridMadridSpain
  3. 3.Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de LisboaLisbonPortugal
  4. 4.Dairy DepartmentTechnological Institute of Food and Agriculture—Scientific and Technological Research Centre of Extremadura (INTAEX—CICYTEX)BadajozSpain
  5. 5.DISAFA Plant Genetics and BreedingUniversity of TorinoGrugliasco, TorinoItaly

Personalised recommendations