Advertisement

Genome Resequencing

  • Alberto Acquadro
  • Lorenzo Barchi
  • Ezio PortisEmail author
  • Sergio Lanteri
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

The first reference genome sequence of the highly heterozygous globe artichoke has been recently released (January 2016, www.artichokegenome.unito.it), organized in 17 pseudomolecules and including about 27,000 predicted genes. Since the release of the first genome draft, it was clear that, due to the its homozygous profile, the plant selected for the draft assembly should be flaked by other assembled genomes cultivated and highly heterozygous. Acquadro and colleagues (Sci Rep 7:5617, 2017) resequenced and assembled six Cynara cardunculus genotypes (40×), which are representative of the four main varietal types, as well as one genotype of cultivated cardoon (C. cardunculus var. altilis). The genomes were annotated revealing an analogous number of genes in all the genotypes, ranging from 27,121 in the ‘Catanese’ to 28,029 in the ‘Romanesco.’ The five proteomes were also analyzed/categorized for RGA features. A total of ~23.5 M SNPs/indels were discovered, and a functional SNPs analysis was established. Recently, to improve the quality metrics of the first reference genome assembly (v1.0), a resequencing of the genotype was attempted through the implementation of a Hi-C library and the production of a v2.0 of the assembly with improved assembly metrics. This new high-quality reference genome, together with the genomic data from the other resequenced genotypes, representing a one-stop resource for C. cardunculus genomics will enable map-based cloning of useful genes from the species and will enhance the taxonomic breadth of the data available for comparative plant genomics in Compositae.

Keywords

Artichoke Genome Resequencing Gene prediction Resistance genes SNPs 

References

  1. Acquadro A, Barchi L, Portis E, Mangino G, Valentino D, Mauromicale G, Lanteri S (2017) Genome reconstruction in Cynara cardunculus taxa gains access to chromosome-scale DNA variation. Sci Rep 7:5617.  https://doi.org/10.1038/s41598-017-05085-7CrossRefPubMedPubMedCentralGoogle Scholar
  2. Acquadro A, Barchi L, Portis E, Valentino D, Lanteri S (2018) Globe artichoke genome 2.0: improvement of its assembly quality & contiguity with proximity ligation library. In: Proceeding 62° SIGA annual congress, Verona, 25–28 Sep 2018Google Scholar
  3. Brandwagt BF, Kneppers TJA, Nijkamp HJJ, Hille J (2007) Overexpression of the tomato Asc-1 gene mediates high insensitivity to AAL toxins and fumonisin B1 in tomato hairy roots and confers resistance to Alternaria alternata f. sp. lycopersici in Nicotiana umbratica plants. http://dx.doi.org/101094/MPMI200215135
  4. Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705.  https://doi.org/10.1016/S0092-8674(00)81912-1CrossRefPubMedGoogle Scholar
  5. Campbell MS, Law M, Holt C, Stein JC, Moghe GD, Hufnagel DE, Lei J, Achawanantakun R, Jiao D, Lawrence CJ, Ware D, Shiu S-H, Childs KL, Sun Y, Jiang N, Yandell M (2014) MAKER-P: a tool kit for the rapid creation, management, and quality control of plant genome annotations. Plant Physiol 164:513–524CrossRefGoogle Scholar
  6. Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci 108:7727–7732.  https://doi.org/10.1073/pnas.1016981108CrossRefPubMedGoogle Scholar
  7. Cardone MF, D’Addabbo P, Alkan C, Bergamini C, Catacchio CR, Anaclerio F, Chiatante G, Marra A, Giannuzzi G, Perniola R, Ventura M, Antonacci D (2016) Inter-varietal structural variation in grapevine genomes. Plant J 88:648–661.  https://doi.org/10.1111/tpj.13274CrossRefPubMedGoogle Scholar
  8. Causse M, Desplat N, Pascual L, Le Paslier M-C, Sauvage C, Bauchet G, Bérard A, Bounon R, Tchoumakov M, Brunel D, Bouchet J-P (2013) Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genom 14:791.  https://doi.org/10.1186/1471-2164-14-791CrossRefGoogle Scholar
  9. Chadwick M, Trewin H, Gawthrop F, Wagstaff C (2013) Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 14:12780–12805.  https://doi.org/10.3390/ijms140612780CrossRefPubMedPubMedCentralGoogle Scholar
  10. Christopoulou M, Wo SR-C, Kozik A, McHale LK, Truco M-J, Wroblewski T, Michelmore RW (2015) Genome-wide architecture of disease resistance genes in lettuce. G3: Genes Genomes Genet 5:2655–2669.  https://doi.org/10.1534/g3.115.020818CrossRefGoogle Scholar
  11. de Lima Morais DA, Fang H, Rackham OJL, Wilson D, Pethica R, Chothia C, Gough J (2011) SUPERFAMILY 1.75 including a domain-centric gene ontology method. Nucleic Acids Res 39:D427–D434CrossRefGoogle Scholar
  12. Dellacecca V, Magnifico V, Marzi V, Porceddu E, Mugnozza GT (1976) Contributo alla conoscenza delle varietà di carciofo coltivate nel mondo. In: Atti 2° Congresso Internazionale di Studi sul carciofo. Edizioni Minerva Medica, Turin, Italy, pp 199–315Google Scholar
  13. Delledonne M, Dal Molin A, Minio A, Ferrarini A, Venturini L, Avanzato C, Toppino L, Sala T, Bassolino L, Barchi L, Comino C, Acquadro A, Portis E, Rinaldi R, Scaglione D, Francese G, D’alessandro A, Mennella G, Perrone D, Acciarri N, Pietrella M, Aprea G, Sulli M, Lanteri S, Rotino GL, Giuliano G (2015) A high quality eggplant (Solanum melongena L.) genome draft allows the mapping of phenotypic and metabolic QTLs. In: The 12th Solanaceae conference, Bordeaux, 25–29 OctGoogle Scholar
  14. Ding J, Zhang W, Jing Z, Chen J-Q, Tian D (2007) Unique pattern of R-gene variation within populations in Arabidopsis. Mol Genet Genomics 277:619–629.  https://doi.org/10.1007/s00438-007-0213-5CrossRefPubMedGoogle Scholar
  15. Eckardt NA (2012) A microRNA cascade in plant defense. Plant Cell 24:840.  https://doi.org/10.1105/tpc.112.240311CrossRefPubMedPubMedCentralGoogle Scholar
  16. Eljounaidi K, Cankar K, Comino C, Moglia A, Hehn A, Bourgaud F, Bouwmeester H, Menin B, Lanteri S, Beekwilder J (2014) Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway. Plant Sci 223:59–68.  https://doi.org/10.1016/j.plantsci.2014.03.007CrossRefGoogle Scholar
  17. Fei Q, Xia R, Meyers BC (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25:2400–2415.  https://doi.org/10.1105/tpc.113.114652CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gan X, Stegle O, Behr J, Steffen JG, Drewe P, Hildebrand KL, Lyngsoe R, Schultheiss SJ, Osborne EJ, Sreedharan VT, Kahles A, Bohnert R, Jean G, Derwent P, Kersey P, Belfield EJ, Harberd NP, Kemen E, Toomajian C, Kover PX, Clark RM, Rätsch G, Mott R (2011) Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477:419–423.  https://doi.org/10.1038/nature10414CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW (2012) Plant disease resistance genes: current status and future directions. Physiol Mol Plant Pathol 78:51–65.  https://doi.org/10.1016/j.pmpp.2012.01.002CrossRefGoogle Scholar
  20. Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312.  https://doi.org/10.1146/annurev.phyto.39.1.285CrossRefPubMedGoogle Scholar
  21. Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJA, Ohyanagi H, Mineta K, Michell CT, Saber N, Kharbatia NM, Rupper RR, Sharp AR, Dally N, Boughton BA, Woo YH, Gao G, Schijlen EGWM, Guo X, Momin AA, Negrão S, Al-Babili S, Gehring C, Roessner U, Jung C, Murphy K, Arold ST, Gojobori T, van der Linden CG, van Loo EN, Jellen EN, Maughan PJ, Tester M (2017) The genome of Chenopodium quinoa. Nature 542:307–312.  https://doi.org/10.1038/nature21370CrossRefPubMedGoogle Scholar
  22. Jiao W-B, Accinelli GG, Hartwig B, Kiefer C, Baker D, Severing E, Willing E-M, Piednoel M, Woetzel S, Madrid-Herrero E, Huettel B, Hümann U, Reinhard R, Koch MA, Swan D, Clavijo B, Coupland G, Schneeberger K (2017) Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data. Genome Res 27:778–786.  https://doi.org/10.1101/gr.213652.116CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jibran R, Dzierzon H, Bassil N, Bushakra JM, Edger PP, Sullivan S, Finn CE, Dossett M, Vining KJ, VanBuren R, Mockler TC, Liachko I, Davies KM, Foster TM, Chagné D (2018) Chromosome-scale scaffolding of the black raspberry (Rubus occidentalis L.) genome based on chromatin interaction data. Hortic Res 5:8.  https://doi.org/10.1038/s41438-017-0013-y
  24. Kallman T, Chen J, Gyllenstrand N, Lagercrantz U (2013) A significant fraction of 21-nucleotide small rna originates from phased degradation of resistance genes in several perennial species. Plant Physiol 162:741–754.  https://doi.org/10.1104/pp.113.214643CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kim J, Lim CJ, Lee B-W, Choi J-P, Oh S-K, Ahmad R, Kwon S-Y, Ahn J, Hur C-G (2012) A genome-wide comparison of NB-LRR type of resistance gene analogs (RGA) in the plant kingdom. Mol Cells 33:385–392.  https://doi.org/10.1007/s10059-012-0003-8CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189CrossRefGoogle Scholar
  27. Lightfoot DJ, Jarvis DE, Ramaraj T, Lee R, Jellen EN, Maughan PJ (2017) Single-molecule sequencing and Hi-C-based proximity-guided assembly of amaranth (Amaranthus hypochondriacus) chromosomes provide insights into genome evolution. BMC Biol 15:74.  https://doi.org/10.1186/s12915-017-0412-4CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X-Q, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433.  https://doi.org/10.1038/nature22043CrossRefPubMedGoogle Scholar
  29. Menin B, Comino C, Portis E, Moglia A, Cankar K, Bouwmeester HJ, Lanteri S, Beekwilder J (2012) Genetic mapping and characterization of the globe artichoke (+)-germacrene A synthase gene, encoding the first dedicated enzyme for biosynthesis of the bitter sesquiterpene lactone cynaropicrin. Plant Sci 190:1–8.  https://doi.org/10.1016/j.plantsci.2012.03.006CrossRefGoogle Scholar
  30. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell Online 15:809–834.  https://doi.org/10.1105/tpc.009308CrossRefGoogle Scholar
  31. Moll KM, Zhou P, Ramaraj T, Fajardo D, Devitt NP, Sadowsky MJ, Stupar RM, Tiffin P, Miller JR, Young ND, Silverstein KAT, Mudge J (2017) Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model, Medicago truncatula. BMC Genomics 18:578.  https://doi.org/10.1186/s12864-017-3971-4CrossRefPubMedPubMedCentralGoogle Scholar
  32. Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15:349–357.  https://doi.org/10.1016/j.pbi.2012.05.006CrossRefPubMedGoogle Scholar
  33. Orgil U, Araki H, Tangchaiburana S, Berkey R, Xiao S (2007) Intraspecific genetic variations, fitness cost and benefit of RPW8, a disease resistance locus in Arabidopsis thaliana. Genetics 176:2317–2333.  https://doi.org/10.1534/genetics.107.070565CrossRefPubMedPubMedCentralGoogle Scholar
  34. Porceddu E, Dellacecca V, Bianco VV (1976) Classificazione numerica di cultivar di carciofo. In: Atti 2° Congresso Internazionale di Studi sul carciofo. Edizioni Minerva Medica, Turin, Italy, pp 1105–1119Google Scholar
  35. Portis E, Mauromicale G, Barchi L, Mauro R, Lanteri S (2005) Population structure and genetic variation in autochthonous globe artichoke germplasm from Sicily Island. Plant Sci 168:1591–1598.  https://doi.org/10.1016/j.plantsci.2005.02.009CrossRefGoogle Scholar
  36. Portis E, Scaglione D, Acquadro A, Mauromicale G, Mauro R, Knapp SJ, Lanteri S (2012) Genetic mapping and identification of QTL for earliness in the globe artichoke/cultivated cardoon complex. BMC Res Notes 5:252.  https://doi.org/10.1186/1756-0500-5-252CrossRefPubMedPubMedCentralGoogle Scholar
  37. Putnam NH, O’Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, Troll CJ, Fields A, Hartley PD, Sugnet CW, Haussler D, Rokhsar DS, Green RE (2016) Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res 26(3):342–350CrossRefGoogle Scholar
  38. Ramos PAB, Guerra ÂR, Guerreiro O, Freire CSR, Silva AMS, Duarte MF, Silvestre AJD (2013) Lipophilic extracts of Cynara cardunculus L. var. altilis (DC): a source of valuable bioactive terpenic compounds. J Agric Food Chem 61:8420–8429.  https://doi.org/10.1021/jf402253aCrossRefPubMedGoogle Scholar
  39. Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, Song C, Xia L, Froenicke L, Lavelle DO, Truco M-J, Xia R, Zhu S, Xu C, Xu H, Xu X, Cox K, Korf I, Meyers BC, Michelmore RW (2017) Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat Commun 8:14953.  https://doi.org/10.1038/ncomms14953CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sanseverino W, Roma G, De Simone M, Faino L, Melito S, Stupka E, Frusciante L, Ercolano MR (2010) PRGdb: a bioinformatics platform for plant resistance gene analysis. Nucleic Acids Res 38:D814–D821.  https://doi.org/10.1093/nar/gkp978CrossRefPubMedGoogle Scholar
  41. Scaglione D, Lanteri S, Acquadro A, Lai Z, Knapp SJ, Rieseberg L, Portis E (2012) Large-scale transcriptome characterization and mass discovery of SNPs in globe artichoke and its related taxa. Plant Biotechnol J 10:956–969.  https://doi.org/10.1111/j.1467-7652.2012.00725.xCrossRefPubMedPubMedCentralGoogle Scholar
  42. Scaglione D, Reyes-Chin-Wo S, Acquadro A, Froenicke L, Portis E, Beitel C, Tirone M, Mauro R, Lo Monaco A, Mauromicale G, Faccioli P, Cattivelli L, Rieseberg L, Michelmore R, Lanteri S (2016) The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of F1 progeny. Sci Rep 6:19427CrossRefGoogle Scholar
  43. Schneider G, Thiele K (1974) Die verteilung des bitterstoffes cynaropicrin in der artischocke. Planta Med 26:174–183.  https://doi.org/10.1055/s-0028-1097986CrossRefGoogle Scholar
  44. Shivaprasad PV, Chen H-M, Patel K, Bond DM, Santos BACM, Baulcombe DC (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24:859–874.  https://doi.org/10.1105/tpc.111.095380CrossRefPubMedPubMedCentralGoogle Scholar
  45. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123CrossRefGoogle Scholar
  46. Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH (2009) JBrowse: a next-generation genome browser. Genome Res 19:1630–1638.  https://doi.org/10.1101/gr.094607.109CrossRefPubMedPubMedCentralGoogle Scholar
  47. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.  https://doi.org/10.1093/bioinformatics/btu033CrossRefPubMedPubMedCentralGoogle Scholar
  48. Takken FL, Goverse A (2012) How to build a pathogen detector: structural basis of NB-LRR function. Curr Opin Plant Biol 15:375–384.  https://doi.org/10.1016/j.pbi.2012.05.001CrossRefPubMedGoogle Scholar
  49. Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J (2003) Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423:74–77.  https://doi.org/10.1038/nature01588CrossRefPubMedGoogle Scholar
  50. Vanella B, Porceddu E, De Pace C (1981) Applicazioni di metodi di analisi numerica per il miglioramento genetico del carciofo. In: Atti 3rd Congresso Internazionale di Studi sul Carciofo, Laterza, Bari, pp 797–807Google Scholar
  51. Wang W, Zhang Y, Wen Y, Berkey R, Ma X, Pan Z, Bendigeri D, King H, Zhang Q, Xiao S (2013) A comprehensive mutational analysis of the Arabidopsis resistance protein rpw8.2 reveals key amino acids for defense activation and protein targeting. Plant Cell 25:4242–4261.  https://doi.org/10.1105/tpc.113.117226CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wretblad S, Bohman S, Dixelius C (2007) Overexpression of a Brassica nigra cDNA gives enhanced resistance to Leptosphaeria maculans in B. napus. http://dx.doi.org/101094/MPMI2003166477
  53. Zhai J, Jeong D-H, De Paoli E, Park S, Rosen BD, Li Y, Gonzalez AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553.  https://doi.org/10.1101/gad.177527.111CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics 271:402–415.  https://doi.org/10.1007/s00438-004-0990-zCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alberto Acquadro
    • 1
  • Lorenzo Barchi
    • 1
  • Ezio Portis
    • 1
    Email author
  • Sergio Lanteri
    • 1
  1. 1.DISAFA Plant Genetics and BreedingUniversity of TorinoGrugliasco, TorinoItaly

Personalised recommendations