The Chloroplast Genome

  • Gabriella SonnanteEmail author
Part of the Compendium of Plant Genomes book series (CPG)


In the last years, the availability of chloroplast genomes for plants and algae is increasing. These data can be useful both in the biotechnological area and in the evolutionary field, for the analysis of phylogenetic relationships among groups of organisms. Thanks to the advance of high-throughput sequencing, it is now possible to obtain the chloroplast genome sequence as a contaminant of whole-genome sequencing projects. Otherwise, the entire organelle genome can be recovered by means of long-range PCR amplification, using universal primers designed on highly conserved regions. The fragments obtained can be massively sequenced and the reads mapped on a reference genome. The chloroplast genomes of the Cynara cardunculus taxa, namely the globe artichoke, wild and cultivated cardoon and of other Cynara wild species are now available in the public databases. The structure of the Cynara chloroplast genome shows the classical quadripartite organization, with a long- and a short-single copy region and two inverted repeats. Within the globe artichoke, a marked variation is observed between the Romaneschi group and the other artichoke varietal types, due to some deletion events present in the Romaneschi. The highly variable regions found in the chloroplast genome can be used for barcode applications and phylogenetic relationships, not only in the genus Cynara, but also in the Asteraceae family.


Artichoke Barcode Chloroplast genome Cynara cardunculus Cultivated cardoon Wild cardoon 


  1. Bi Y, Zhang MF, Xue J, Dong R, Du YP, Zhang XH (2018) Chloroplast genomic resources for phylogeny and DNA barcoding: A case study on Fritillaria. Sci Rep 8:1184CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chen Z, Feng K, Grover CE, Li P, Liu F, Wang Y, Xu Q, Shang M, Zhou Z, Cai X, Wang X, Wendel JF, Wang K, Hua J (2016) Chloroplast DNA structural variation, phylogeny, and age of divergence among diploid cotton species. PLoS ONE 11:e0157183CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cheng H, Li JF, Zhang H, Cai BH, Gao ZH, Qiao YS, Mi L (2017) The complete chloroplast genome sequence of strawberry (Fragaria × ananassa Duch.) and comparison with related species of Rosaceae. Peer J 5:e3919CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chung HJ, Jong DJ, Park HW (2006) The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. Plant Cell Rep 25:1369–1379CrossRefPubMedGoogle Scholar
  5. Curci PL, De Paola D, Danzi D, Vendramin GG, Sonnante G (2015) Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae. PLoS ONE 10:e0120589CrossRefPubMedPubMedCentralGoogle Scholar
  6. Curci PL, De Paola D, Sonnante G (2016) Development of chloroplast genomic resources for Cynara. Mol Ecol Resour 16:562–573CrossRefPubMedPubMedCentralGoogle Scholar
  7. Curci PL, Sonnante G (2016) The complete chloroplast genome of Cynara humilis. Mitochondrial DNA Part A 27:2345–2346Google Scholar
  8. Daniell H (2007) Transgene containment by maternal inheritance: effective or elusive? Proc Natl Acad Sci USA 104:6879–6880CrossRefPubMedGoogle Scholar
  9. Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution and applications in genetic engineering. Genome Biol 17:134CrossRefPubMedPubMedCentralGoogle Scholar
  10. De Las Riva J, Lozano JJ, Ortiz AR (2002) Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Res 12:567–583CrossRefGoogle Scholar
  11. Dierckxsens N, Mardulyn P, Smits G (2016) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucl Acids Res 45:e18Google Scholar
  12. Doorduin L, Gravendeel B, Lammers Y, Ariyurek Y, Chin-A-Woeng T, Vrieling K (2011) The complete chloroplast genome of 17 individuals of pest species Jacobaea vulgaris: SNPs, microsatellites and barcoding markers for population and phylogenetic studies. DNA Res 18:93–105CrossRefPubMedPubMedCentralGoogle Scholar
  13. Downie SR, Palmer JD (1992) Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis PS, Soltis DE, Doyle JE (eds) Molecular systematics of plants. Chapman & Hall, New York, USA, pp 14–35CrossRefGoogle Scholar
  14. Ferrarini M, Moretto M, Ward JA, Šurbanovski N, Stevanović V, Giongo L, Viola R, Cavalieri D, Velasco R, Cestaro A, Sargent DJ (2013) An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome. BMC Genom 14:670CrossRefGoogle Scholar
  15. Gatto A, De Paola D, De Bagnoli F, Vendramin GG, Sonnante G (2013) Population structure of Cynara cardunculus complex and the origin of the conspecific crops artichoke and cardoon. Ann Bot 112:855–865CrossRefPubMedPubMedCentralGoogle Scholar
  16. George B, Bhatt BS, Awasthi M, George B, Singh AK (2015) Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr Genet 61:665–667CrossRefPubMedGoogle Scholar
  17. Guisinger MM, Chumley TW, Kuehl JV, Boore JL, Jansen RK (2010) Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in poaceae. J Mol Evol 70:149–166CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jansen RK, Cai Z, Raubeson LA, Daniell H, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee S-B, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374CrossRefGoogle Scholar
  19. Jansen RK, Kaittanis C, Saski C, Lee SB, Tomkins J, Alverson AJ, Daniell H (2006) Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 6:32CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jarvis P, López-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14:787–802CrossRefPubMedGoogle Scholar
  21. Lee SB, Kaittanis C, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H (2006) The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms. BMC Genom 7:61CrossRefGoogle Scholar
  22. Li Q, Li Y, Song J, Xu H, Xu J, Zhu Y, Li X, Gao H, Dong L, Qian J, Sun C, Chen S (2014) High-accuracy de novo assembly and SNP detection of chloroplast genomes using a SMRT circular consensus sequencing strategy. New Phytol 204:1041–1049CrossRefPubMedGoogle Scholar
  23. Li R, Ma PF, Wen J, Yi TS (2013) Complete sequencing of five Araliaceae chloroplast genomes and the phylogenetic implications. PLoS ONE 8:e78568CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S (2015) Plant DNA barcoding: from gene to genome. Biol Rev 90:157–166CrossRefPubMedGoogle Scholar
  25. Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604Google Scholar
  26. Olmstead RG, Palmer JD (1994) Chloroplast DNA systematic: a review of methods and data analysis. Am J Bot 81:1205–1224CrossRefGoogle Scholar
  27. Pagnotta MA, Fernández JA, Sonnante G, Egea-Gilabert C (2017) Genetic diversity and accession structure in European Cynara cardunculus collections. PLoS ONE 12:e0178770CrossRefPubMedPubMedCentralGoogle Scholar
  28. Palmer JD, Thompson WF (1982) Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29:537–550CrossRefPubMedGoogle Scholar
  29. Pavan S, Curci PL, Zuluaga DL, Blanco E, Sonnante G (2018) Genotyping-by-sequencing highlights patterns of genetic structure and domestication in artichoke and cardoon. PLoS ONE 13(10):e0205988CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pogson BJ, Ganguly D, Albrecht-Borth V (2015) Insights into chloroplast biogenesis and development. Biochim Biophys Acta 847:1017–1024CrossRefGoogle Scholar
  31. Porceddu E, Dellacecca V, Bianco VV (1976) Classificazione numerica di cultivar di carciofo. In: Proceedings of the II International Congress on Artichoke, Bari. Minerva Medica (in Italian), Torino, pp 1105–1119Google Scholar
  32. Powell W, Morgante M, Andre C, McNicol JW, Machray GC, Doyle JJ, Tingey SV, Rafalski JA (1995) Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Curr Biol 5:1023–1029CrossRefPubMedGoogle Scholar
  33. Qian J, Song J, Gao H, Zhu Y, Xu J, Pang X, Yao H, Sun C, Li X, Li C, Liu J, Xu H, Chen S (2013) The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS ONE 8:e57607CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rottenberg A (2015) The wild gene pool of globe artichoke. Israel J Plant Sci 62:1–2CrossRefGoogle Scholar
  35. Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  36. Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH (2017) Early photosynthetic eukaryotes inhabited salinity habitats. Proc Natl Acad Sci USA 114:E7737–E7745CrossRefPubMedGoogle Scholar
  37. Sasaki T, Yukawa Y, Miyamoto T, Obokata J, Sugiura M (2003) Identification of RNA editing sites in chloroplast transcripts from the maternal and paternal progenitors of tobacco (Nicotiana tabacum): comparative analysis shows the involvement of distinct trans-factors for ndhB editing. Mol Biol Evol 20:1028–1035CrossRefPubMedGoogle Scholar
  38. Saski C, Lee SB, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL (2007) Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 115:571–590CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6:283–290CrossRefPubMedGoogle Scholar
  40. Sonnante G, Carluccio AV, De Paolis A, Pignone D (2008) Identification of artichoke SSR markers: molecular variation and patterns of diversity in genetically cohesive taxa and wild allies. Genet Resour Crop Evol 55:1029–1046CrossRefGoogle Scholar
  41. Sonnante G, Carluccio AV, Vilatersana R, Pignone D (2007) On the origin of artichoke and cardoon from Cynara gene pool as revealed by rDNA sequence variation. Genet Resour Crop Evol 54:483–495CrossRefGoogle Scholar
  42. Sonnante G, De Paolis A, Pignone D (2003) Relationships among artichoke cultivars and some related wild taxa based on AFLP markers. Plant Genet Resour: Characteriz Utiliz 1:125–133CrossRefGoogle Scholar
  43. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049CrossRefPubMedPubMedCentralGoogle Scholar
  44. Stefanović S, Pfeil BE, Palmer JD, Doyle JJ (2009) Relationships among phaseoloid legumes based on sequences from eight chloroplast regions. Syst Bot 34:115–128CrossRefGoogle Scholar
  45. Tiller N, Bock R (2014) The translational apparatus of plastids and its role in plant development. Mol Plant 7:1105–1120CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wiklund A (1992) The genus Cynara L. (Asteraceae-Cardueae). Bot J Linn Soc 109:75–123CrossRefGoogle Scholar
  47. Wu FH, Kan DP, Lee SB, Daniell H, Lee YW, Lin CC, Lin NS, Lin CS (2009) Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes. Tree Physiol 29:847–856CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wu CS, Wang YN, Hsu CY, Lin CP, Chaw SM (2011) Loss of different inverted repeat copies from the chloroplast genomes of Pinaceae and cupressophytes and influence of heterotachy on the evaluation of gymnosperm phylogeny. Genome Biol Evol 3:1284–1295CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yamane K, Yano K, Kawahara T (2006) Pattern and rate of indel evolution from whole chloroplast intergenic regions in sugarcane, maize and rice. DNA Res 13:197–204CrossRefPubMedGoogle Scholar
  50. Yang Y, Dang YY, Li Q, Lu JJ, Li XW, Wang YT (2014a) Complete chloroplast genome sequence of poisonous and medicinal plant Datura stramonium: organizations and implications for genetic engineering. PLoS ONE 9:e110656CrossRefPubMedPubMedCentralGoogle Scholar
  51. Yang JB, Li DZ, Li HT (2014b) Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Molec Ecol Resour 14:1024–1031CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Biosciences and Bioresources—National Research Council (CNR)BariItaly

Personalised recommendations