Skip to main content

Zeolites: What Are They?

  • Chapter
  • First Online:
  • 581 Accesses

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

In this chapter, the main aspects of the study of zeolites including the chronology of the research, structural descriptions and classification of the zeolitic materials are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Feldspars are more closed than zeolites, feldspathoids have a lower degree of aluminum in their structure, and scapolite differs by naturally possessing anionic structural groups. In addition, both groups consist of anhydrous minerals, while zeolites are hydrated (Klein and Dutrow 2012).

  2. 2.

    Abbreviation for “Mobil Composition of Matter”.

  3. 3.

    Abbreviation for “Santa Barbara Amorphous”.

  4. 4.

    Abbreviation for “Korea Advanced Institute of Science and Technology”.

  5. 5.

    Codes for mentioning SBU types. “S” stands for “simple”, “D” is equivalent to “double”, “R” is “ring” and “#” is the number of tetrahedra involved in the unit..

References

  • Ackley M (2003) Application of natural zeolites in the purification and separation of gases. Microporous Mesoporous Mater 61:25–42. https://doi.org/10.1016/s1387-1811(03)00353-6

    Article  CAS  Google Scholar 

  • Anderson MW, Gebbie-Rayet JT, Hill AR et al (2017) Predicting crystal growth via a unified kinetic three-dimensional partition model. Nature 544:456–459. https://doi.org/10.1038/nature21684

    Article  CAS  Google Scholar 

  • Anurova NA, Blatov VA, Ilyushin GD, Proserpio DM (2010) Natural tilings for zeolite-type frameworks. J Phys Chem C 114:10160–10170. https://doi.org/10.1021/jp1030027

    Article  CAS  Google Scholar 

  • Argauer RJ, Landolt GR (1972) Crystalline zeolite ZSM-5 and method of preparing the same. US Patent 3,702,886, 14 Nov 1972

    Google Scholar 

  • Armbruster T, Gunter ME (2001) Crystal structures of natural zeolites. In: Bish DL, Ming DW (eds) Natural zeolites: occurrence, properties and applications. Reviews in mineralogy and geochesmitry, vol 45. Mineralogical Society of America, Virginia, pp 1–67

    Google Scholar 

  • Ates A, Akgül G (2016) Modification of natural zeolite with NaOH for removal of manganese in drinking water. Powder Technol 287:285–291. https://doi.org/10.1016/j.powtec.2015.10.021

    Article  CAS  Google Scholar 

  • Baerlocher C, McCusker LB (2018) Database of zeolite structures. http://www.iza-structure.org/databases/. Accessed 26 Oct 2018

  • Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th edn. Elsevier, Amsterdã, p 3

    Book  Google Scholar 

  • Balkus KJ (2002) Synthesis of large pore zeolites and molecular sieves. In: Karlin KD (ed) Progress in inorganic chemistry. Progress in inorganic chemistry series, vol 50. Wiley, New York, pp 217–268

    Chapter  Google Scholar 

  • Barrer RM (1948) 435. Syntheses and reactions of mordenite. J Chem Soc (Resumed): 2158

    Google Scholar 

  • Barrer RM (1979) Chemical nomenclature and formulation of compositions of synthetic and natural zeolites. Pure Appl Chem 51:1091–1100. https://doi.org/10.1351/pac197951051091

    Article  Google Scholar 

  • Barrer RM (1986) Zeolite synthesis: an overview. In: Basset J-M, Gates BC, Candy J-P, Choplin A, Leconte M, Quignard F, Santini C (eds) Surface organometallic chemistry: molecular approaches to surface catalysis. Kluwer Academic Publishers, France, pp 221–243

    Google Scholar 

  • Barrer RM, Baynham JW, Bultitude FW, Meier WM (1959) 36. Hydrothermal chemistry of the silicates. Part VIII. Low-temperature crystal growth of aluminosilicates, and of some gallium and germanium analogues. J Chem Soc (Resumed) 195. https://doi.org/10.1039/jr9590000195

  • Bell RG, Jackson RA, Catlow CRA (1992) Löwestein’s rule in zeolite A: a computational study. Zeolites 12:870–871

    Article  CAS  Google Scholar 

  • Bieseki L, Simancas R, Jordá JL et al (2018) Synthesis and structure determination via ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62. Chem Commun 54:2122–2125. https://doi.org/10.1039/c7cc09240g

    Article  CAS  Google Scholar 

  • Blatov VA, Delgado-Friedrichs O, O’keeffe M et al (2007) Periodic nets and tilings: possibilities for analysis and design of porous materials. In: Xu R, Gao Z, Chen J et al (eds) From zeolites to porous MOF materials—The 40th anniversary of International Zeolite Conference. Proceedings of 15th International Zeolite Conference, Beijing, 12–17 August (Studies in surface science and catalysis), vol 170B. Elsevier, Amsterdã, pp 1637–1645

    Chapter  Google Scholar 

  • Braga ACA, Morgon NH (2007) Descrições estruturais cristalinas de zeólitos. Quim Nova 30(1):178–188

    Article  CAS  Google Scholar 

  • Breck DW (1964a) Crystalline molecular sieves. J Chem Educ 41(12):678

    Article  CAS  Google Scholar 

  • Breck DW (1964b) Crystalline zeolite Y. US Patent 3,130,007, 21 Apr 1964

    Google Scholar 

  • Breck DW (1974) Zeolite molecular sieves. Structure, chemistry, and use. Wiley, New York, p 771

    Google Scholar 

  • Breck DW, Eversole WG, Milton RM et al (1956) Crystalline zeolites. I. The properties of a new synthetic zeolite, type A. J Am Chem Soc 78:5963–5972. https://doi.org/10.1021/ja01604a001

    Article  CAS  Google Scholar 

  • Byrappa K, Yoshimura M (2013) Physical Chemistry of hydrothermal growth of crystals. In: Byrappa K, Yoshimura M (eds) Handbook of hydrothermal technology, 2nd edn. Elsevier, Oxford, pp 139–175

    Chapter  Google Scholar 

  • Camblor MA, Corma A, Díaz-Cabañas M-J, Baerlocher C (1998) Synthesis and structural characterization of MWW type zeolite ITQ-1, the pure silica analog of MCM-22 and SSZ-25. J Phys Chem B 102:44–51. https://doi.org/10.1021/jp972319k

    Article  CAS  Google Scholar 

  • Chatterjee A (2010) Structure property correlations for nanoporous materials. CRC Press, New York, p 183

    Google Scholar 

  • Colella C (2005) Natural zeolites. In: Čejka J, Van Bekkum H (eds) Zeolites and ordered mesoporous materials: progress and prospects. In: 1st FEZA School of zeolite, Prague, August 2005 (Studies in Surface Science and Catalysis), vol 157. Elsevier, Amsterdã, pp 13–40

    Google Scholar 

  • Coombs DS, Alberti A, Armbruster T et al (1998) Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Mineral Mag 62:533–571. https://doi.org/10.1180/002646198547800

    Article  CAS  Google Scholar 

  • Corma A, Fornes V, Pergher SB et al (1998) Delaminated zeolite precursors as selective acidic catalysts. Nature 396:353–356. https://doi.org/10.1038/24592

    Article  CAS  Google Scholar 

  • Corrêa MLS, Wallau M, Schuchardt U (1996) Zeólitas tipo AlPO: Síntese, caracterização e propriedades catalíticas. Química Nova, [S.I], vol 19, n 1, pp 43–50.

    Google Scholar 

  • Cundy CS, Cox PA (2003) The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem Rev 103:663–702. https://doi.org/10.1021/cr020060i

    Article  CAS  Google Scholar 

  • Cundy CS, Cox PA (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater 82(1–2):1–78

    Article  CAS  Google Scholar 

  • Delgado-Friedrichs O, Dress AWM, Huson DH et al (1999) Systematic enumeration of crystalline networks. Nature 400:644–647. https://doi.org/10.1038/23210

    Article  CAS  Google Scholar 

  • Deng X, Wang Y, Shen L et al (2013) Low-cost synthesis of titanium silicalite-1 (TS-1) with highly catalytic oxidation performance through a controlled hydrolysis process. Ind Eng Chem Res 52:1190–1196. https://doi.org/10.1021/ie302467t

    Article  CAS  Google Scholar 

  • Estermann M, Mccusker LB, Baerlocher C et al (1991) A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening. Nature 352:320–323. https://doi.org/10.1038/352320a0

    Article  CAS  Google Scholar 

  • Fatourehchi N, Sohrabi M, Royaee SJ, Mirarefin SM (2011) Preparation of SAPO-34 catalyst and presentation of a kinetic model for methanol to olefin process (MTO). Chem Eng Res Des 89:811–816. https://doi.org/10.1016/j.cherd.2010.10.007

    Article  CAS  Google Scholar 

  • Flanigen EM, Patton RL (1978) Silica polymorph and process for preparing the same. US Patent 4,073,865, 14 Feb 1978

    Google Scholar 

  • Flanigen EM (2001) Zeolites and Molecular Sieves: An historical perspective. In: Van Bekkum H, Flanigen EM, Jansen KJC (eds). Introduction to Zeolite Science and Practice. 2. ed Amsterdã: Elsevier B.V. Cap. 2. pp 11–35. (Studies in Surface Science and Catalysis. vol 137)

    Google Scholar 

  • Flanigen EM, Broach RW, Wilson ST (2010) Introduction. In: Kulprathipanja S (ed) Zeolites in industrial separation and catalysis, 1st edn. Wiley-VCH, Weinheim, pp 1–26

    Google Scholar 

  • Fletcher RE, Ling S, Slater B (2017) Violations of Löwensteins rule in zeolites. Chem Sci 8:7483–7491. https://doi.org/10.1039/c7sc02531a

    Article  CAS  Google Scholar 

  • Ghobakar H, Schäf O, Massiani Y, Knauth P (2003) The reconstruction of natural zeolites, 1st edn. Kluwen Academic Publishers, Netherlands, p 1

    Google Scholar 

  • Ghosh A, Jordan E, Shantz DF (2009) Applications of microporous and mesoporous materials. In: Klabunde KJ, Richards RM (eds) Nanoscale materials in chemistry, 2nd edn. Wiley, New Jersey, pp 331–366

    Chapter  Google Scholar 

  • Giannetto GP, Montes AR, Rodriguéz GF (2000) Zeolitas: características, propiedades y aplicaciones industriales. Editorial Innovacíon Tecnológica, Facultad de Ingeniería, UCV, Caracas

    Google Scholar 

  • Gilson J-P (1992) Organic and inorganic agents in the synthesis of molecular sieves. In: Zeolite microporous solids: synthesis, structure, and reactivity, pp 19–48. https://doi.org/10.1007/978-94-011-2604-5_2

    Chapter  Google Scholar 

  • Gottardi G, Galli E (1985) Zeolites with 6-Rings. In: Gottardi G, Galli E (eds) Natural zeolites. Minerals and rocks series, vol 18. Springer, Heidelberg, pp 168–222

    Google Scholar 

  • Guisnet M, Ribeiro FR (2004) Zeólitos: Um nanomundo ao serviço da catálise. Lisboa: Fundação Calouste Gulbenkian. p 221

    Google Scholar 

  • Hanwell MD, Curtis DE, Lonie DC et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17. https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  Google Scholar 

  • Howe-Grant M (1998) Kirk-Othmer encyclopedia of chemical technology, vol 16, 4th edn. Wiley

    Google Scholar 

  • Kerr GT (1966) Chemistry of crystalline aluminosilicates. II. The synthesis and properties of zeolite ZK-4. Inorg Chem 5:1537–1539. https://doi.org/10.1021/ic50043a015

    Article  CAS  Google Scholar 

  • Knight CTG (1990) Are zeolite secondary building units really red herrings? Zeolites 10:140–144. https://doi.org/10.1016/0144-2449(90)90036-q

    Article  CAS  Google Scholar 

  • Klein C, Dutrow B (2012) Manual of mineral science, 23th edn. Wiley, USA. Portuguese edition: Klein C, Dutrow B (2012) Manual de Ciência dos Minerais (trans: Menegat R). Bookman, São Paulo

    Google Scholar 

  • Koningsveld HV (1991) Structural subunits in silicate and phosphate structures. In: Bekkum HV, Flaingen EM, Jansen JC (eds) Introduction to zeolite science and practice. Studies in surface science and catalysis, vol 58. Elsevier, Amsterdã, pp 35–76

    Google Scholar 

  • Koningsveld HV (2007) Compendium of zeolite framework types: building schemes and type characteristics. Elsevier, Amsterdã

    Google Scholar 

  • Larin AV (2013) The Loewenstein rule: the increase in electron kinetic energy as the reason for instability of Al–O–Al linkage in aluminosilicate zeolites. Phys Chem Miner 40:771–780. https://doi.org/10.1007/s00269-013-0611-7

    Article  CAS  Google Scholar 

  • Lazlo P (2018) Two laboratory deaths, and keeping organic solvents dry. Angew Chem Int Ed 57:8822–8824. https://doi.org/10.1002/anie.201803276

    Article  CAS  Google Scholar 

  • Li Y, Yu J (2014) New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chem Rev 114:7268–7316. https://doi.org/10.1021/cr500010r

    Article  CAS  Google Scholar 

  • Li J, Corma A, Yu J (2015) Synthesis of new zeolite structures. Chem Soc Rev 44:7112–7127. https://doi.org/10.1039/c5cs00023h

    Article  CAS  Google Scholar 

  • Liebau F, Gies H, Gunawardane R, Marler B (1986) Classification of tectosilicates and systematic nomenclature of clathrate type tectosilicates: a proposal. Zeolites 6:373–377. https://doi.org/10.1016/0144-2449(86)90065-5

    Article  CAS  Google Scholar 

  • Lok BM, Messina CA, Patton RL et al (1984) Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. J Am Chem Soc 106:6092–6093. https://doi.org/10.1021/ja00332a063

    Article  CAS  Google Scholar 

  • Lowenstein W, Lowenstein M (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. Am Mineral 39:92–96

    Google Scholar 

  • Man AJMD, Sauer J (1996) Coordination, structure, and vibrational spectra of titanium in silicates and zeolites in comparison with related molecules. An ab initio study. J Phys Chem 100:5025–5034. https://doi.org/10.1021/jp952790i

    Article  Google Scholar 

  • Masters AF, Maschmeyer T (2011) Zeolites—from curiosity to cornerstone. Microporous Mesoporous Mater 142:423–438. https://doi.org/10.1016/j.micromeso.2010.12.026

    Article  CAS  Google Scholar 

  • McCusker LB (2005) IUPAC nomenclature for ordered microporous and mesoporous materials and its application to non-zeolite microporous mineral phases. Rev Mineral Geochem 57:1–16. https://doi.org/10.2138/rmg.2005.57.1

    Article  CAS  Google Scholar 

  • McCusker LB, Baerlocher C (2005) Zeolite structures. In: Čejka J, Bekkum HV (eds) Zeolites and ordered mesoporous materials: progress and prospects. Studies in surface science and catalysis, vol 157, 1st edn. Elsevier, Amsterdã, pp 41–64

    Google Scholar 

  • McCusker LB, Liebau F, Engelhardt G (2001) Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts (IUPAC recommendations 2001). Pure Appl Chem 73:381–394. https://doi.org/10.1351/pac200173020381

    Article  CAS  Google Scholar 

  • McDaniel CV, Maher PK (1969) Stabilized zeolites. US Patent 3,449,070, 10 June 1969

    Google Scholar 

  • Millini R, Belussi G (2017) Zeolite science and perpectives. In: Čejka J, Morris R, Nachtigall P (eds) Zeolites in catalysis: properties and applications. RSC catalysis series, vol 28. The Royal Society of Chemistry, Cryondon, pp 1–36

    Google Scholar 

  • Mintova S, Grand J, Valtchev V (2016) Nanosized zeolites: quo vadis? C R Chim 19:183–191. https://doi.org/10.1016/j.crci.2015.11.005

    Article  CAS  Google Scholar 

  • Möller K, Bein T (2011) Pores within pores—how to craft ordered hierarchical zeolites. Science 333:297–298. https://doi.org/10.1126/science.1208528

    Article  CAS  Google Scholar 

  • Morris RE, Čejka J (2015) Exploiting chemically selective weakness in solids as a route to new porous materials. Nat Chem 7:381–388. https://doi.org/10.1038/nchem.2222

    Article  CAS  Google Scholar 

  • Mortier WJ, Schoonheydt RA (1985) Surface and solid state chemistry of zeolites. Prog Solid State Chem 16:1–125. https://doi.org/10.1016/0079-6786(85)90002-0

    Article  Google Scholar 

  • Mumpton FA (1999) La roca magica: uses of natural zeolites in agriculture and industry. Proc Natl Acad Sci 96:3463–3470. https://doi.org/10.1073/pnas.96.7.3463

    Article  CAS  Google Scholar 

  • Muraoka K, Chaikittisilp W, Okubo T (2016) Energy analysis of aluminosilicate zeolites with comprehensive ranges of framework topologies, chemical compositions, and aluminum distributions. J Am Chem Soc 138:6184–6193. https://doi.org/10.1021/jacs.6b01341

    Article  CAS  Google Scholar 

  • Paillaud J-L, Patarin J (2016). Initial materials for synthesis of zeolites. In: Mintova S (ed) Verified syntheses of zeolitic materials, 3rd edn. Synthesis Commission of International Zeolite Association, pp 24–28

    Google Scholar 

  • Papaioannou D, Katsoulos P, Panousis N, Karatzias H (2005) The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases: a review. Microporous Mesoporous Mater 84:161–170. https://doi.org/10.1016/j.micromeso.2005.05.030

    Article  CAS  Google Scholar 

  • Passaglia E, Sheppard RA (2001) The crystal chemistry of zeolites. Rev Mineral Geochem 45:69–116. https://doi.org/10.2138/rmg.2001.45.2

    Article  CAS  Google Scholar 

  • Pastore HO (1996) A lógica da substituição isomórfica em peneiras moleculares. Quim Nova 19(4):372–376

    Google Scholar 

  • Payra P, Dutta PK (2003) Zeolites: a primer. In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of zeolite science and technology. Marcel Dekker, Inc., New York, pp 125–199

    Google Scholar 

  • Poole CP Jr (2004) Encyclopedic dictionary of condensed matter physics, vol 1A-M. Elsevier, San Diego, p 1507

    Google Scholar 

  • Pophale R, Cheeseman PA, Deem MW (2011) A database of new zeolite-like materials. Phys Chem Chem Phys 13:12407. https://doi.org/10.1039/c0cp02255a

    Article  CAS  Google Scholar 

  • Qiao Q, Wang R, Gou M, Yang X (2014) Catalytic performance of boron and aluminium incorporated ZSM-5 zeolites for isomerization of styrene oxide to phenylacetaldehyde. Microporous Mesoporous Mater 195:250–257. https://doi.org/10.1016/j.micromeso.2014.04.042

    Article  CAS  Google Scholar 

  • Reháková M, Čuvanová S, Dzivák M et al (2004) Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Curr Opin Solid State Mater Sci 8:397–404. https://doi.org/10.1016/j.cossms.2005.04.004

    Article  CAS  Google Scholar 

  • Resende NGAM, Monte MBM, Paiva PRP (2008) Zeólitas naturais. In: Luz, AB, Lins FAF (eds) Rochas & Minerais Industriais: Usos e especificações, 2nd edn. CETEM/MCT, Rio de Janeiro, pp 889–915

    Google Scholar 

  • Shams K, Ahi H (2013) Synthesis of 5A zeolite nanocrystals using kaolin via nanoemulsion-ultrasonic technique and study of its sorption using a known kerosene cut. Microporous Mesoporous Mater 180:61–70. https://doi.org/10.1016/j.micromeso.2013.06.019

    Article  CAS  Google Scholar 

  • Smith JV (2000) Tetrahedral frameworks of zeolites, clathrates and related materials. Physical chemistry—Landolt-Börnstein: numerical data and functional relationships in science and technology, vol 14A. Springer, New York, p 266

    Google Scholar 

  • Stocker K, Ellersdorfer M, Lehner M, Raith JG (2017) Characterization and utilization of natural zeolites in technical applications. BHM Berg- Huettenmaenn Monatsh 162:142–147. https://doi.org/10.1007/s00501-017-0596-5

    Article  CAS  Google Scholar 

  • Szostak R (1992) Handbook of molecular sieves. Van Nostrand Reinhold, New York, p 343

    Google Scholar 

  • Taramasso M, Perego G, Notari B (1983) Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US Patent 4,410,501, 18 Oct 1983

    Google Scholar 

  • Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  • Wadlinger RL, Kerr GT, Rosinski EJ (1967) Catalytic composition of a crystalline zeolite. US 3,308,069, 7 Mar 1967

    Google Scholar 

  • Weigel O, Steinhoff E (1924) IX. Die Aufnahme organischer Flüssigkeitsdämpfe durch Chabasit. Z Kristallogr-Cryst Mater 61:125–164

    Article  Google Scholar 

  • Wilson ST, Lok BM, Messina CA, Cannan TR, Flanigen EM (1983) Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. In: Stucky GD, Dwyer FG (eds) Intrazeolite chemistry. ACS symposium series, vol 218. American Chemical Society, Washington DC, pp 79–106

    Google Scholar 

  • Xu R, Pang W, Yu J, Huo Q et al (2007) Chemistry of zeolites and related porous materials: synthesis and structure. Wiley, Singapore

    Book  Google Scholar 

  • Yamane I, Nakazawa T (1986) Development of zeolite for non-phosphated detergents in Japan. Pure Appl Chem 58:1397–1404. https://doi.org/10.1351/pac198658101397

    Article  CAS  Google Scholar 

  • Yilmaz B, Müller U (2009) Catalytic applications of zeolites in chemical industry. Top Catal 52:888–895. https://doi.org/10.1007/s11244-009-9226-0

    Article  CAS  Google Scholar 

  • Zimmermann NER, Haranczyk M (2016) History and utility of zeolite framework-type discovery from a data-science perspective. Cryst Growth Des 16:3043–3048. https://doi.org/10.1021/acs.cgd.6b00272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibele Berenice Castellã Pergher .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaves Lima, R., Bieseki, L., Vinaches Melguizo, P., Castellã Pergher, S.B. (2019). Zeolites: What Are They?. In: Environmentally Friendly Zeolites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-19970-8_1

Download citation

Publish with us

Policies and ethics