Skip to main content

RNA Therapeutics: How Far Have We Gone?

  • Chapter
  • First Online:
Book cover The mRNA Metabolism in Human Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1157))

Abstract

In recent years, the RNA molecule became one of the most promising targets for therapeutic intervention. Currently, a large number of RNA-based therapeutics are being investigated both at the basic research level and in late-stage clinical trials. Some of them are even already approved for treatment. RNA-based approaches can act at pre-mRNA level (by splicing modulation/correction using antisense oligonucleotides or U1snRNA vectors), at mRNA level (inhibiting gene expression by siRNAs and antisense oligonucleotides) or at DNA level (by editing mutated sequences through the use of CRISPR/Cas). Other RNA approaches include the delivery of in vitro transcribed (IVT) mRNA or the use of oligonucleotides aptamers. Here we review these approaches and their translation into clinics trying to give a brief overview also on the difficulties to its application as well as the research that is being done to overcome them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2′-F:

2′-fluoro

2′-MOE:

2′-O-methoxyethyl

2′-O-CH2Py(4):

2′-O-methyl-4-pyrimidine

2′-OMe:

2′-O-methyl

AADC:

Aromatic L-amino Acid Decarboxylase

AAVs:

Adeno-associated Viruses;

AGO:

Argonaute

AMD:

Age-related Macular Degeneration

AONs:

Antisense Oligonucleotides

ASGPR:

Asialoglycoprotein receptor

ASGR:

Asialoglycoprotein Receptor

BBB:

Blood Brain Barrier

BMD:

Becker Muscular Dystrophy

CNS:

Central Nervous System

CPPs:

Cell-penetrating Peptides

CRISPR:

Clustered Regulatory Interspaced Short Palindromic Repeats

CRISPR-Cas 9:

CRISPR-associated protein 9 (Cas9)

CSF:

Cerebrospinal Fluid

DLin-MC3-DMA:

Anionic lipid dilinol eylmethyl-4-dimethyl-aminoburyate

DMD:

Duchenne Muscular Dystrophy

dsRNAs:

double-stranded RNAs

ExSpeU1s:

Exon-Specific U1 snRNAs

FH:

Familial Hypercholesterolemia

GalNAc:

N-acetylgalactosamine

GPCRs:

G Protein-coupled Receptors

HCV:

Hepatitis C Virus

hFVII:

Human Factor VII

hTTRA:

Hereditary Transthyretin Amyloidosis

I2S:

Iduronate 2-sulfatase

IVT:

in vitro transcribed

LDL-C:

Low-density Lipoprotein Cholesterol

LNAs:

Locked Nucleic Acids

LNPs:

Lipid-based Nanoparticles

miRNAs:

microRNAs

mNIS+7:

Modified Neurologic Impairment Score +7

mRNA:

messenger RNA

NDA:

New Drug Application

PCK9:

Proprotein Convertase Subtilisin/Kexin Type 9

PD:

Pharmacodynamics

PILs:

Pegylated immunoliposomes

PIWI:

P-element induced wimpy testis

PK:

Pharmacokinetics

PMOs:

Phosphoroamidate Morpholino Oligomers

PNAs:

Peptide Nucleic Acids

PS:

Phosphorothioate

RIS:

RNA-induced silencing complex

RNAi:

RNA interference

RNP:

Ribonucleoprotein

RTK:

Human Receptor Tyrosine Kinase

SELEX:

Systematic Evolution of Ligands by Exponential enrichment

sgRNA:

single guide RNA

shRNA:

short hairpin RNA

siRNAs:

small interference RNAs

SLNs:

Solid Lipid Nanoparticles

Sm:

Smith antigen

SMA:

Spinal Muscular Atrophy

SNALPs:

Nucleic-acid-lipid-particles

SSOs:

Splice Switching Oligonucleotides

TLRs:

Toll-like Receptors

TTR:

Transthyretin

U.S. FDA:

U.S. Food and Drug Administration

References

  1. Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293

    Article  CAS  PubMed  Google Scholar 

  2. Godfrey C et al (2017) Delivery is key: lessons learnt from developing splice-switching antisense therapies. EMBO Mol Med 9(5):545–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McClorey G, Wood MJ (2015) An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr Opin Pharmacol 24:52–58

    Article  CAS  PubMed  Google Scholar 

  4. Rossor AM, Reilly MM, Sleigh JN (2018) Antisense oligonucleotides and other genetic therapies made simple. Pract Neurol 18(2):126–131

    Article  PubMed  Google Scholar 

  5. Bauman JA et al (2010) Anti-tumor activity of splice-switching oligonucleotides. Nucleic Acids Res 38(22):8348–8356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11(2):125–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sardone V et al (2017) Antisense oligonucleotide-based therapy for neuromuscular disease. Molecules 22(4):E563

    Article  PubMed Central  Google Scholar 

  8. Paterson BM, Roberts BE, Kuff EL (1977) Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. Proc Natl Acad Sci USA 74(10):4370–4374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 75(1):280–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schoch KM, Miller TM (2017) Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron 94(6):1056–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crooke ST et al (2018) RNA-targeted therapeutics. Cell Metab 27(4):714–739

    Article  CAS  PubMed  Google Scholar 

  12. Oberemok VV et al (2018) A half-century history of applications of antisense oligonucleotides in medicine, agriculture and forestry: we should continue the journey. Molecules 23(6):1302

    Article  PubMed Central  CAS  Google Scholar 

  13. Khvorova A, Watts JK (2017) The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 35(3):238–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chan JH, Lim S, Wong WS (2006) Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol 33(5–6):533–540

    Article  CAS  PubMed  Google Scholar 

  15. Chery J (2016) RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J 4(7):35–50

    Article  PubMed  PubMed Central  Google Scholar 

  16. Roehr B (1998) Fomivirsen approved for CMV retinitis. J Int Assoc Phys AIDS Care 4(10):14–16

    CAS  Google Scholar 

  17. Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270(8):1628–1644

    Article  CAS  PubMed  Google Scholar 

  18. Rigo F, Seth P, Bennett C (2014) Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. In: Yeo G (ed) Systems biology of RNA binding proteins, advances in experimental medicine and biology. Springer, New York, pp 303–352

    Google Scholar 

  19. Monia BP et al (1993) Evaluation of 2′-modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem 268(19):14514–14522

    CAS  PubMed  Google Scholar 

  20. Evers MM, Toonen LJ, van Roon-Mom WM (2015) Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev 87:90–103

    Article  CAS  PubMed  Google Scholar 

  21. Geary RS et al (2015) Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 87:46–51

    Article  CAS  PubMed  Google Scholar 

  22. Aartsma-Rus A (2012) Overview on AON design. Methods Mol Biol 867:117–129

    Article  CAS  PubMed  Google Scholar 

  23. Vitravene Study G (2002) A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am J Ophthalmol 133(4):467–474

    Article  Google Scholar 

  24. Vitravene Study G (2002) Randomized dose-comparison studies of intravitreous fomivirsen for treatment of cytomegalovirus retinitis that has reactivated or is persistently active despite other therapies in patients with AIDS. Am J Ophthalmol 133(4):475–483

    Article  Google Scholar 

  25. Vitravene Study G (2002) Safety of intravitreous fomivirsen for treatment of cytomegalovirus retinitis in patients with AIDS. Am J Ophthalmol 133(4):484–498

    Article  Google Scholar 

  26. Duell PB et al (2016) Long-term mipomersen treatment is associated with a reduction in cardiovascular events in patients with familial hypercholesterolemia. J Clin Lipidol 10(4):1011–1021

    Article  PubMed  Google Scholar 

  27. Raal FJ et al (2010) Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375(9719):998–1006

    Article  CAS  PubMed  Google Scholar 

  28. Raal FJ et al (2016) Pediatric experience with mipomersen as adjunctive therapy for homozygous familial hypercholesterolemia. J Clin Lipidol 10(4):860–869

    Article  PubMed  Google Scholar 

  29. Santos RD et al (2015) Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein(a) in various populations with hypercholesterolemia: results of 4 phase III trials. Arterioscler Thromb Vasc Biol 35(3):689–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chiriboga CA et al (2016) Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 86(10):890–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Finkel RS et al (2016) Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388(10063):3017–3026

    Article  CAS  PubMed  Google Scholar 

  32. Finkel RS et al (2017) Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 377(18):1723–1732

    Article  CAS  PubMed  Google Scholar 

  33. Mercuri E et al (2018) Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med 378(7):625–635

    Article  CAS  PubMed  Google Scholar 

  34. Cirak S et al (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378(9791):595–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mendell JR et al (2013) Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 74(5):637–647

    Article  CAS  PubMed  Google Scholar 

  36. Miner P et al (2004) An enema formulation of alicaforsen, an antisense inhibitor of intercellular adhesion molecule-1, in the treatment of chronic, unremitting pouchitis. Aliment Pharmacol Ther 19(3):281–286

    Article  CAS  PubMed  Google Scholar 

  37. Monteleone G et al (2015) Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N Engl J Med 372(12):1104–1113

    Article  CAS  PubMed  Google Scholar 

  38. Ackermann EJ et al (2016) Suppressing transthyretin production in mice, monkeys and humans using 2nd-generation antisense oligonucleotides. Amyloid 23(3):148–157

    Article  CAS  PubMed  Google Scholar 

  39. Digenio A et al (2016) Antisense-mediated lowering of plasma apolipoprotein C-III by Volanesorsen improves dyslipidemia and insulin sensitivity in type 2 diabetes. Diabetes Care 39(8):1408–1415

    Article  CAS  PubMed  Google Scholar 

  40. Gaudet D et al (2017) The APPROACH study: a randomized, double-blind, placebo-controlled, phase 3 study of volanesorsen administered subcutaneously to patients with familial chylomicronemia syndrome (FCS). J Clin Lipidol 11:814–815

    Article  Google Scholar 

  41. Gaudet D et al (2014) Targeting APOC3 in the familial chylomicronemia syndrome. N Engl J Med 371(23):2200–2206

    Article  PubMed  CAS  Google Scholar 

  42. Gaudet D et al (2015) Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med 373(5):438–447

    Article  CAS  PubMed  Google Scholar 

  43. Buller HR et al (2015) Factor XI antisense oligonucleotide for prevention of venous thrombosis. N Engl J Med 372(3):232–240

    Article  PubMed  CAS  Google Scholar 

  44. Bhanot S et al (2013) ISIS-GCCRRX, a novel glucocorticoid (GC) receptor antisense drug reduces cholesterol and triglycerides and attenuates dexamethasone induced hepatic insulin resistance without systemic GC antagonism in normal subjects. Diabetologia 56:S282

    Google Scholar 

  45. Morgan E, et al (2014) ISIS-GCGRRx, an antisense glucagon receptor antagonist, caused rapid, robust, and sustained improvements in glycemic control without changes in BW, BP, lipids, or hypoglycemia in T2DM patients on stable metformin therapy. Diabetes 56(11):2183–2195

    Google Scholar 

  46. Chi KN et al (2016) A phase I dose-escalation study of apatorsen (OGX-427), an antisense inhibitor targeting heat shock protein 27 (Hsp27), in patients with castration-resistant prostate cancer and other advanced cancers. Ann Oncol 27(6):1116–1122

    Article  CAS  PubMed  Google Scholar 

  47. Limmroth V et al (2014) CD49d antisense drug ATL1102 reduces disease activity in patients with relapsing-remitting MS. Neurology 83(20):1780–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hong D et al (2015) AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med 7(314):314ra185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Chowdhury S et al (2016) A phase I dose escalation, safety and pharmacokinetic (PK) study of AZD5312 (IONISARRx), a first-in-class Generation 2.5 antisense oligonucleotide targeting the androgen receptor (AR). Eur J Cancer 69:S145

    Article  Google Scholar 

  50. Janssen HL et al (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368(18):1685–1694

    Article  CAS  PubMed  Google Scholar 

  51. van der Ree MH et al (2014) Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antivir Res 111:53–59

    Article  PubMed  CAS  Google Scholar 

  52. Viney NJ et al (2016) Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet 388(10057):2239–2253

    Article  CAS  PubMed  Google Scholar 

  53. Graham MJ et al (2017) Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med 377(3):222–232

    Article  CAS  PubMed  Google Scholar 

  54. Sermet-Gaudelus I et al (2018) Antisense oligonucleotide eluforsen improves CFTR function in F508del cystic fibrosis. J Cyst Fibros S1569–1993(18)30914–7

    Google Scholar 

  55. Querfeld C et al (2017) Ph 1 trial evaluating MRG-106, a microrna-155 inhibitor, administered by intratumoral, subcutaneous, or intravenous delivery in cutaneous T-cell lymphoma (CTCL) patients. Hematol Oncol 35:275

    Article  Google Scholar 

  56. Pfeiffer N et al (2017) First-in-human phase I study of ISTH0036, an antisense oligonucleotide selectively targeting transforming growth factor beta 2 (TGF-β2), in subjects with open-angle glaucoma undergoing glaucoma filtration surgery. PLoS One 12(11):e0188899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. McCaleb M et al (2017) Systemic pharmacodynamic efficacy of a complement factor B antisense oligonucleotide in preclinical and phase 1 clinical studies. Invest Ophthalmol Vis Sci 58:1952

    Google Scholar 

  58. Goemans NM et al (2016) Long-term efficacy, safety, and pharmacokinetics of drisapersen in Duchenne muscular dystrophy: results from an open-label extension study. PLoS One 11(9):e0161955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Voit T et al (2014) Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol 13(10):987–996

    Article  CAS  PubMed  Google Scholar 

  60. Saad F et al (2011) Randomized phase II trial of Custirsen (OGX-011) in combination with docetaxel or mitoxantrone as second-line therapy in patients with metastatic castrate-resistant prostate cancer progressing after first-line docetaxel: CUOG trial P-06c. Clin Cancer Res 17(17):5765–5773

    Article  CAS  PubMed  Google Scholar 

  61. Tsimikas S et al (2015) Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet 386(10002):1472–1483

    Article  CAS  PubMed  Google Scholar 

  62. van Meer L et al (2016) Renal effects of antisense-mediated inhibition of SGLT2. J Pharmacol Exp Ther 359(2):280–289

    Article  PubMed  CAS  Google Scholar 

  63. Miller TM et al (2013) An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 12(5):435–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sewell KL et al (2002) Phase I trial of ISIS 104838, a 2′-methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-alpha. J Pharmacol Exp Ther 303(3):1334–1343

    Article  CAS  PubMed  Google Scholar 

  65. Mignon L et al (2016) ISIS-DMPKRx in healthy volunteers: a placebo-controlled, randomized, single ascending-dose phase 1 Study. Neurology 86(16 Supplement):P3.166

    Google Scholar 

  66. Bianchini D et al (2013) First-in-human Phase I study of EZN-4176, a locked nucleic acid antisense oligonucleotide to exon 4 of the androgen receptor mRNA in patients with castration-resistant prostate cancer. Br J Cancer 109(10):2579–2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Toth PP (2011) Antisense therapy and emerging applications for the management of dyslipidemia. J Clin Lipidol 5(6):441–449

    Article  PubMed  Google Scholar 

  68. Visser ME et al (2012) Mipomersen, an apolipoprotein B synthesis inhibitor, lowers low-density lipoprotein cholesterol in high-risk statin-intolerant patients: a randomized, double-blind, placebo-controlled trial. Eur Heart J 33(9):1142–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nguyen DD, Chang S (2017) Development of novel therapeutic agents by inhibition of oncogenic microRNAs. Int J Mol Sci 19(1):E65

    Google Scholar 

  70. van der Ree MH et al (2016) Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment Pharmacol Ther 43(1):102–113

    Article  PubMed  CAS  Google Scholar 

  71. Hua Y et al (2010) Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 24(15):1634–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lefebvre S et al (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16(3):265–269

    Article  CAS  PubMed  Google Scholar 

  73. Hua Y et al (2008) Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet 82(4):834–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. De Vivo DC et al (2017) Interim efficacy and safety results from the phase 2 NURTURE study evaluating nusinersen in presymptomatic infants with spinal muscular atrophy. Neurology 88:S46.003.75

    Google Scholar 

  75. Mendell JR et al (2012) Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol 71(3):304–313

    Article  CAS  PubMed  Google Scholar 

  76. Emery AE (1991) Population frequencies of inherited neuromuscular diseases–a world survey. Neuromuscul Disord 1(1):19–29

    Article  CAS  PubMed  Google Scholar 

  77. Ervasti JM (2007) Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochim Biophys Acta 1772(2):108–117

    Article  CAS  PubMed  Google Scholar 

  78. Kole R, Krieg AM (2015) Exon skipping therapy for Duchenne muscular dystrophy. Adv Drug Deliv Rev 87:104–107

    Article  CAS  PubMed  Google Scholar 

  79. Lim KR, Maruyama R, Yokota T (2017) Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther 11:533–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mendell JR et al (2016) Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol 79(2):257–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kinane TB et al (2018) Long-term pulmonary function in Duchenne muscular dystrophy: comparison of Eteplirsen-treated patients to natural history. J Neuromuscul Dis 5(1):47–58

    Article  PubMed  PubMed Central  Google Scholar 

  82. Garanto A et al (2016) In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery. Hum Mol Genet 25(12):2552–2563

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Denti MA et al (2006) Body-wide gene therapy of Duchenne muscular dystrophy in the mdx mouse model. Proc Natl Acad Sci USA 103(10):3758–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Denti MA et al (2008) Long-term benefit of adeno-associated virus/antisense-mediated exon skipping in dystrophic mice. Hum Gene Ther 19(6):601–608

    Article  CAS  PubMed  Google Scholar 

  85. Goyenvalle A et al (2009) Enhanced exon-skipping induced by U7 snRNA carrying a splicing silencer sequence: promising tool for DMD therapy. Mol Ther 17(7):1234–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Goyenvalle A et al (2012) Engineering multiple U7snRNA constructs to induce single and multiexon-skipping for Duchenne muscular dystrophy. Mol Ther 20(6):1212–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vulin A et al (2012) Muscle function recovery in golden retriever muscular dystrophy after AAV1-U7 exon skipping. Mol Ther 20(11):2120–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Geib T, Hertel KJ (2009) Restoration of full-length SMN promoted by adenoviral vectors expressing RNA antisense oligonucleotides embedded in U7 snRNAs. PLoS One 4(12):e8204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Odermatt P et al (2016) Somatic therapy of a mouse SMA model with a U7 snRNA gene correcting SMN2 splicing. Mol Ther 24(10):1797–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Imbert M, Dias-Florencio G, Goyenvalle A (2017) Viral vector-mediated antisense therapy for genetic diseases. Genes (Basel) 8(2):E51

    Article  PubMed Central  CAS  Google Scholar 

  91. Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353(2):172–187

    Article  CAS  PubMed  Google Scholar 

  92. Cornelio DB, Roesler R, Schwartsmann G (2007) Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann Oncol 18(9):1457–1466

    Article  CAS  PubMed  Google Scholar 

  93. Low PS, Kularatne SA (2009) Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol 13(3):256–262

    Article  CAS  PubMed  Google Scholar 

  94. McGettrick AF, O’Neill LA (2010) Localisation and trafficking of Toll-like receptors: an important mode of regulation. Curr Opin Immunol 22(1):20–27

    Article  CAS  PubMed  Google Scholar 

  95. Millard M, Odde S, Neamati N (2011) Integrin targeted therapeutics. Theranostics 1:154–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Canton J, Neculai D, Grinstein S (2013) Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 13(9):621–634

    Article  CAS  PubMed  Google Scholar 

  97. D’Souza AA, Devarajan PV (2015) Asialoglycoprotein receptor mediated hepatocyte targeting – strategies and applications. J Control Release 203:126–139

    Article  PubMed  CAS  Google Scholar 

  98. Juliano RL (2016) The delivery of therapeutic oligonucleotides. Nucleic Acids Res 44(14):6518–6548

    Article  PubMed  PubMed Central  Google Scholar 

  99. McClorey G, Banerjee S (2018) Cell-penetrating peptides to enhance delivery of oligonucleotide-based therapeutics. Biomedicine 6(2):E51

    Article  PubMed Central  CAS  Google Scholar 

  100. Yin H et al (2008) Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 17(24):3909–3918

    Article  CAS  PubMed  Google Scholar 

  101. Yin H et al (2009) A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice. Hum Mol Genet 28(4):699

    Article  Google Scholar 

  102. Wu B et al (2008) Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci USA 105(39):14814–14819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Betts C et al (2012) Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol Ther Nucleic Acids 1:e38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Gao X et al (2014) Effective dystrophin restoration by a novel muscle-homing peptide-morpholino conjugate in dystrophin-deficient mdx mice. Mol Ther 22(7):1333–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jirka SMG et al (2014) Peptide conjugation of 20-O-methyl phosphorothioate antisense oligonucleotides enhances cardiac uptake and exon skipping in mdx mice. Nucleic Acid Ther 24:25–36

    Article  CAS  PubMed  Google Scholar 

  106. Leger AJ et al (2013) Systemic delivery of a Peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy. Nucleic Acid Ther 23(2):109–117

    Article  CAS  PubMed  Google Scholar 

  107. Hammond SM et al (2016) Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci USA 113(39):10962–10967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shabanpoor F et al (2017) Identification of a peptide for systemic brain delivery of a morpholino oligonucleotide in mouse models of spinal muscular atrophy. Nucleic Acid Ther 27(3):130–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lönn P et al (2016) Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics. Sci Rep 6:32301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Salerno JC et al (2016) Novel cell-penetrating peptide-adaptors effect intracellular delivery and endosomal escape of protein cargos. J Cell Sci 129(12):2473–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Falzarano MS, Passarelli C, Ferlini A (2014) Nanoparticle delivery of antisense oligonucleotides and their application in the exon skipping strategy for Duchenne muscular dystrophy. Nucleic Acid Ther 24(1):87–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lerner MR et al (1980) Are snRNPs involved in splicing? Nature 283(5743):220–224

    Article  CAS  PubMed  Google Scholar 

  113. Rogers J, Wall R (1980) A mechanism for RNA splicing. Proc Natl Acad Sci USA 77(4):1877–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mount SM et al (1983) The U1 small nuclear RNA-protein complex selectively binds a 5′ splice site in vitro. Cell 33(2):509–518

    Article  CAS  PubMed  Google Scholar 

  115. West S (2012) The increasing functional repertoire of U1 snRNA. Biochem Soc Trans 40(4):846–849

    Article  CAS  PubMed  Google Scholar 

  116. Buratti E, Baralle D (2010) Novel roles of U1 snRNP in alternative splicing regulation. RNA Biol 7(4):412–419

    Article  CAS  PubMed  Google Scholar 

  117. Roca X, Krainer AR, Eperon IC (2013) Pick one, but be quick: 5′ splice sites and the problems of too many choices. Genes Dev 27(2):129–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Raponi M, Baralle D (2008) Can donor splice site recognition occur without the involvement of U1 snRNP? Biochem Soc Trans 36.(Pt 3:548–550

    Article  CAS  PubMed  Google Scholar 

  119. Guiro J, O’Reilly D (2015) Insights into the U1 small nuclear ribonucleoprotein complex superfamily. Wiley Interdiscip Rev RNA 6(1):79–92

    Article  CAS  PubMed  Google Scholar 

  120. Spraggon L, Cartegni L (2013) U1 snRNP-dependent suppression of polyadenylation: physiological role and therapeutic opportunities in Cancer. Int J Cell Biol 2013:846510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Valadkhan S, Gunawardane LS (2013) Role of small nuclear RNAs in eukaryotic gene expression. Essays Biochem 54:79–90

    Article  CAS  PubMed  Google Scholar 

  122. Buratti E et al (2007) Aberrant 5′ splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res 35(13):4250–4263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Roca X et al (2008) Features of 5′-splice-site efficiency derived from disease-causing mutations and comparative genomics. Genome Res 18(1):77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhuang Y, Weiner AM (1986) A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation. Cell 46(6):827–835

    Article  CAS  PubMed  Google Scholar 

  125. Baralle M et al (2003) Identification of a mutation that perturbs NF1 agene splicing using genomic DNA samples and a minigene assay. J Med Genet 40(3):220–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pinotti M et al (2008) U1-snRNA-mediated rescue of mRNA processing in severe factor VII deficiency. Blood 111(5):2681–2684

    Article  CAS  PubMed  Google Scholar 

  127. Pinotti M et al (2009) Rescue of coagulation factor VII function by the U1+5A snRNA. Blood 113(25):6461–6464

    Article  CAS  PubMed  Google Scholar 

  128. Tanner G et al (2009) Therapeutic strategy to rescue mutation-induced exon skipping in rhodopsin by adaptation of U1 snRNA. Hum Mutat 30(2):255–263

    Article  CAS  PubMed  Google Scholar 

  129. Glaus E et al (2011) Gene therapeutic approach using mutation-adapted U1 snRNA to correct a RPGR splice defect in patient-derived cells. Mol Ther 19(5):936–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sánchez-Alcudia R et al (2011) Overexpression of adapted U1snRNA in patients’ cells to correct a 5′ splice site mutation in propionic acidemia. Mol Genet Metab 102(2):134–138

    Article  PubMed  CAS  Google Scholar 

  131. Martínez-Pizarro A et al (2018) Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5′ splice site. Plos Genet 14:e1007360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Schmid F et al (2011) U1 snRNA-mediated gene therapeutic correction of splice defects caused by an exceptionally mild BBS mutation. Hum Mutat 32(7):815–824

    Article  CAS  PubMed  Google Scholar 

  133. Schmid F et al (2013) A gene therapeutic approach to correct splice defects with modified U1 and U6 snRNPs. Hum Gene Ther 24(1):97–104

    Article  CAS  PubMed  Google Scholar 

  134. Hartmann L et al (2010) Correct mRNA processing at a mutant TT splice donor in FANCC ameliorates the clinical phenotype in patients and is enhanced by delivery of suppressor U1 snRNAs. Am J Hum Genet 87(4):480–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Matos L et al (2014) Therapeutic strategies based on modified U1 snRNAs and chaperones for Sanfilippo C splicing mutations. Orphanet J Rare Dis 9:180

    Article  PubMed  PubMed Central  Google Scholar 

  136. Scalet D et al (2019) Disease-causing variants of the conserved +2T of 5′ splice sites can be rescued by engineered U1snRNAs. Hum Mutat 40(1):48–52

    Article  CAS  PubMed  Google Scholar 

  137. Balestra D et al (2014) An engineered U1 small nuclear RNA rescues splicing defective coagulation F7 gene expression in mice. J Thromb Haemost 12(2):177–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lee NC et al (2016) Mutation-adapted U1 snRNA corrects a splicing error of the dopa decarboxylase gene. Hum Mol Genet 25(23):5142–5147

    CAS  PubMed  Google Scholar 

  139. Pinotti M et al (2011) RNA-based therapeutic approaches for coagulation factor deficiencies. J Thromb Haemost 9(11):2143–2152

    Article  CAS  PubMed  Google Scholar 

  140. Wally V, Murauer EM, Bauer JW (2012) Spliceosome-mediated trans-splicing: the therapeutic cut and paste. J Invest Dermatol 132(8):1959–1966

    Article  CAS  PubMed  Google Scholar 

  141. Roca X, Krainer AR (2009) Recognition of atypical 5′ splice sites by shifted base-pairing to U1 snRNA. Nat Struct Mol Biol 16(2):176–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cohen JB et al (1994) Suppression of mammalian 5′ splice-site defects by U1 small nuclear RNAs from a distance. Proc Natl Acad Sci USA 91(22):10470–10474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hwang DY, Cohen JB (1997) U1 small nuclear RNA-promoted exon selection requires a minimal distance between the position of U1 binding and the 3′ splice site across the exon. Mol Cell Biol 17(12):7099–7107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fernandez Alanis E et al (2012) An exon-specific U1 small nuclear RNA (snRNA) strategy to correct splicing defects. Hum Mol Genet 21(11):2389–2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tajnik M et al (2016) Molecular basis and therapeutic strategies to rescue factor IX variants that affect splicing and protein function. PLoS Genet 12(5):e1006082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Dal Mas A et al (2015) Exon-specific U1s correct SPINK5 exon 11 skipping caused by a synonymous substitution that affects a bifunctional splicing regulatory element. Hum Mutat 36(5):504–512

    Article  CAS  PubMed  Google Scholar 

  147. Nizzardo M et al (2015) Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches. Sci Rep 5:p. 11746

    Article  Google Scholar 

  148. Mattioli C et al (2014) Unusual splice site mutations disrupt FANCA exon 8 definition. Biochim Biophys Acta 1842(7):1052–1058

    Article  CAS  PubMed  Google Scholar 

  149. Dal Mas A et al (2015) Improvement of SMN2 pre-mRNA processing mediated by exon-specific U1 small nuclear RNA. Am J Hum Genet 96(1):93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rogalska ME et al (2016) Therapeutic activity of modified U1 core spliceosomal particles. Nat Commun 7:11168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Donadon I et al (2018) Exon-specific U1 snRNAs improve ELP1 exon 20 definition and rescue ELP1 protein expression in a familial dysautonomia mouse model. Hum Mol Genet 27(14):2466–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Balestra D et al (2016) An exon-specific U1snRNA induces a robust factor IX activity in mice expressing multiple human FIX splicing mutants. Mol Ther Nucleic Acids 5(10):e370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. van der Woerd WL et al (2015) Analysis of aberrant pre-messenger RNA splicing resulting from mutations in ATP8B1 and efficient in vitro rescue by adapted U1 small nuclear RNA. Hepatology 61(4):1382–1391

    Article  PubMed  CAS  Google Scholar 

  154. Hwu WL, Lee YM, Lee NC (2017) Gene therapy with modified U1 small nuclear RNA. Expert Rev Endocrinol Metab 12(3):171–175

    Article  CAS  PubMed  Google Scholar 

  155. Suñé-Pou M et al (2017) Targeting splicing in the treatment of human disease. Genes (Basel) 8(3):E87

    Article  PubMed Central  CAS  Google Scholar 

  156. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2(4):279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. van der Krol AR et al (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2(4):291–299

    PubMed  PubMed Central  Google Scholar 

  158. Fire A et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  PubMed  Google Scholar 

  159. Montgomery MK, Xu S, Fire A (1998) RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci USA 95(26):15502–15507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95(7):1017–1026

    Article  CAS  PubMed  Google Scholar 

  161. Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17(8):449–459

    Article  CAS  PubMed  Google Scholar 

  162. Ketting RF et al (1999) Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99(2):133–141

    Article  CAS  PubMed  Google Scholar 

  163. Wu-Scharf D et al (2000) Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Science 290(5494):1159–1162

    Article  CAS  PubMed  Google Scholar 

  164. Hamilton A et al (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21(17):4671–4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286(5441):950–952

    Article  CAS  PubMed  Google Scholar 

  166. Cogoni C et al (1996) Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. EMBO J 15(12):3153–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Cecere G, Cogoni C (2009) Quelling targets the rDNA locus and functions in rDNA copy number control. BMC Microbiol 9:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Elbashir SM et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    Article  CAS  PubMed  Google Scholar 

  169. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15(2):188–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Caplen NJ et al (2000) dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252(1–2):95–105

    Article  CAS  PubMed  Google Scholar 

  171. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9(1):22–32

    Article  CAS  PubMed  Google Scholar 

  172. Deng Y et al (2014) Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene 538(2):217–227

    Article  CAS  PubMed  Google Scholar 

  173. Sandy P, Ventura A, Jacks T (2005) Mammalian RNAi: a practical guide. BioTechniques 39(2):215–224

    Article  CAS  PubMed  Google Scholar 

  174. Aagaard L, Rossi JJ (2007) RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59(2–3):75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fraser AG et al (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408(6810):325–330

    Article  CAS  PubMed  Google Scholar 

  176. Lum L et al (2003) Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299(5615):2039–2045

    Article  CAS  PubMed  Google Scholar 

  177. Boutros M et al (2004) Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303(5659):832–835

    Article  CAS  PubMed  Google Scholar 

  178. Paddison PJ et al (2004) A resource for large-scale RNA-interference-based screens in mammals. Nature 428(6981):427–431

    Article  CAS  PubMed  Google Scholar 

  179. Silva JM et al (2008) Profiling essential genes in human mammary cells by multiplex RNAi screening. Science 319(5863):617–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Schlabach MR et al (2008) Cancer proliferation gene discovery through functional genomics. Science 319(5863):620–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Brass AL et al (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319(5865):921–926

    Article  CAS  PubMed  Google Scholar 

  182. Luo J et al (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137(5):835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Mittal V (2004) Improving the efficiency of RNA interference in mammals. Nat Rev Genet 5(5):355–365

    Article  CAS  PubMed  Google Scholar 

  184. Hannon GJ, Rossi JJ (2004) Unlocking the potential of the human genome with RNA interference. Nature 431(7006):371–378

    Article  CAS  PubMed  Google Scholar 

  185. Rytlewski JA, Beronja S (2015) RNAi in the mouse: rapid and affordable gene function studies in a vertebrate system. Wiley Interdiscip Rev Dev Biol 4(1):45–57

    Article  CAS  PubMed  Google Scholar 

  186. Lieberman J (2018) Tapping the RNA world for therapeutics. Nat Struct Mol Biol 25(5):357–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hayden EC (2014) RNA interference rebooted. Nature 508(7497):443

    Article  PubMed  CAS  Google Scholar 

  188. Song E et al (2003) RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 9(3):347–351

    Article  CAS  PubMed  Google Scholar 

  189. Wittrup A, Lieberman J (2015) Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet 16(9):543–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Coelho T et al (2013) Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med 369(9):819–829

    Article  CAS  PubMed  Google Scholar 

  191. Suhr OB et al (2015) Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet J Rare Dis 10:109

    Article  PubMed  PubMed Central  Google Scholar 

  192. Demirjian S et al (2017) Safety and tolerability Study of an intravenously administered small interfering ribonucleic acid (siRNA) post on-pump cardiothoracic surgery in patients at risk of acute kidney injury. Kidney Int Rep 2(5):836–843

    Article  PubMed  PubMed Central  Google Scholar 

  193. Peddi V, Ratner L, Cooper M, Gaber O, Feng S, Tso P, Bowers V, Naraghi R, Budde K, Polinsky M et al (2014) Treatment with QPI-1002, a short interfering (SI) RNA for the prophylaxis of delayed graft function. Transplantation 98:153

    Article  Google Scholar 

  194. Benitez-Del-Castillo JM et al (2016) Safety and efficacy clinical trials for SYL1001, a novel short interfering RNA for the treatment of dry eye disease. Invest Ophthalmol Vis Sci 57(14):6447–6454

    Article  CAS  PubMed  Google Scholar 

  195. Antoszyk A, Katz B, Singh R, Gurses-Ozden R, Erlich S, Rothenstein D, Sharon N, Hodge J, Levin L, Miller N et al (2013) A phase I open label, dose escalation trial of QPI-1007 delivered by a single intravitreal (IVT) injection to subjects with low visual acuity and acute non-arteritic anterior ischemic optic neuropathy (NAION). Invest Ophthalmol Vis Sci 54(4575):4575

    Google Scholar 

  196. Solano EC et al (2014) Toxicological and pharmacokinetic properties of QPI-1007, a chemically modified synthetic siRNA targeting caspase 2 mRNA, following intravitreal injection. Nucleic Acid Ther 24(4):258–266

    Article  CAS  PubMed  Google Scholar 

  197. Pasi KJ et al (2016) Fitusiran, an investigational RNAi therapeutic targeting antithrombin for the treatment of hemophilia: updated results from phase 1 and phase 2 extension studies in patients with inhibitors. Blood 128:1397

    Google Scholar 

  198. Ragni, et al (2016) Fitusiran, an investigational RNAi therapeutic targeting antithrombin for the treatment of hemophilia: updated results from a phase 1 and phase 1/2 extension study in patients without inhibitors. Blood 128:2572

    Google Scholar 

  199. Fitzgerald K et al (2017) A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med 376(1):41–51

    Article  CAS  PubMed  Google Scholar 

  200. Ray KK et al (2017) Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med 376(15):1430–1440

    Article  CAS  PubMed  Google Scholar 

  201. Drugs.com. Alnylam announces FDA acceptance of New Drug Application (NDA) and priority review status for patisiran, an investigational RNAi therapeutic for the treatment of hereditary ATTR (hATTR) amyloidosis. 2018 10 Aug 2018. Available from: https://www.drugs.com/nda/patisiran_180201.html

  202. Golan T et al (2015) RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget 6(27):24560–24570

    Article  PubMed  PubMed Central  Google Scholar 

  203. Zorde Khvalevsky E et al (2013) Mutant KRAS is a druggable target for pancreatic cancer. Proc Natl Acad Sci USA 110(51):20723–20728

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  204. Gonzalez, et al (2014) Phase 2 of bamosiran (SYL040012), a novel RNAi based compound for the treatment of increased intraocular pressure associated to glaucoma. Invest Ophthalmol Vis Sci 55(13):564

    Google Scholar 

  205. Moreno-Montanes J et al (2014) Phase I clinical trial of SYL040012, a small interfering RNA targeting beta-adrenergic receptor 2, for lowering intraocular pressure. Mol Ther 22(1):226–232

    Article  CAS  PubMed  Google Scholar 

  206. Demuere et al (2016) A phase I/II study of TKM-080301, a PLK1-targeted RNAi in patients with adrenocortical cancer (ACC). J Clin Oncol 34:2547

    Article  Google Scholar 

  207. Libertine, et al. (2015) Update on phase 2 clinical trial results of RXI-109 treatment to reduce the formation of hypertrophic dermal scars. J Am Acad Dermatol 72:AB273

    Google Scholar 

  208. Nguyen QD et al (2012) Dose-ranging evaluation of intravitreal siRNA PF-04523655 for diabetic macular edema (the DEGAS study). Invest Ophthalmol Vis Sci 53(12):7666–7674

    Article  PubMed  CAS  Google Scholar 

  209. Hill, et al (2016) A subcutaneously administered investigational RNAi Therapeutic (ALN-CC5) targeting complement C5 for treatment of PNH and complement-mediated diseases: preliminary phase 1/2 study results in patients with PNH. Blood 128:3891

    Google Scholar 

  210. Hulton, et al. (2016) A phase 1/2 trial of ALN-GO1, an investigational RNAi therapeutic for primary hyperoxaluria type 1 (PH1). Pediatr Nephrol 31:1763

    Google Scholar 

  211. Sterinu-Cercel et al (2017) A phase 2a study evaluating the multi-dose activity of ARB-1467 in HBeAg-Positive and –negative virally suppressed subjects with hepatitis B. J Hepatol p 66:S688–S689

    Article  Google Scholar 

  212. Lawitz E et al (2015) Safety, pharmacokinetics, and biologic activity of ND-L02-s0201, a novel targeted lipid-nanoparticle to deliver HSP47 siRNA for the treatment of patients with advanced liver fibrosis: interim results from clinical phase 1b/2 studies. S Hepatology 62(909A):S688–S689

    Google Scholar 

  213. Salzberg et al (2016) Adoptive cellular immunotherapy with APN401, autologous Cbl-b-silenced peripheral blood mononuclear cells, in patients with solid tumors. J Clin Oncol 34:e14541

    Article  Google Scholar 

  214. Triozzi, et al. (2015) Phase I clinical trial of adoptive cellular immunotherapy with APN401 in patients with solid tumors. Immun Cancer 3(Suppl 2):175

    Article  Google Scholar 

  215. Alsina M et al (2012) Open-label extension study of the RNAi therapeutic ALN-VSP02 in cancer patients responding to therapy. J Clin Oncol 30(4):3062

    Google Scholar 

  216. Cervantes et al (2011) Phase I dose escalation study of ALN-VSP02, a novel RNAi therapeutic for solid tumors with liver involvement. J Clin Oncol 29:3025

    Article  Google Scholar 

  217. Fitzgerald K et al (2014) Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet 383(9911):60–68

    Article  CAS  PubMed  Google Scholar 

  218. Leachman SA et al (2010) First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder. Mol Ther 18(2):442–446

    Article  CAS  PubMed  Google Scholar 

  219. Gillmore, et al (2016) Phase 2 open-label extension study of revusiran, an investigational RNAi therapeutic for the treatment of patients with transthyretin amyloidosis with cardiomyopathy: updated interim results. 2016: Abstract book, international symposium of amyloidosis, p PA84

    Google Scholar 

  220. Zimmermann TS et al (2017) Clinical proof of concept for a novel hepatocyte-targeting GalNAc-siRNA conjugate. Mol Ther 25(1):71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Xu CF et al (2015) Targeting glucose uptake of glioma cells by siRNA delivery with polymer nanoparticle. J Control Release 213:e23–e24

    Article  PubMed  Google Scholar 

  222. Zuckerman JE et al (2014) Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci USA 111(31):11449–11454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Yuen et al (2017) Prolonged RNA interference therapy with ARC-520 Injection in treatment naı¨ve, HBeAg positive and negative patients with chronic HBV results in significant reductions of HBs antigen. J Hepatol 66:S27

    Article  Google Scholar 

  224. Turner, et al. (2017) Hepatic targeted RNA interference provides deep and prolonged knockdown of alpha-1 antitrypsin levels in ZZ patients. J. Hepatol 66:S92

    Article  Google Scholar 

  225. Drugs.com. Alnylam presents new clinical results from the APOLLO phase 3 study of patisiran at the 16th international symposium on amyloidosis. 2018 10 Aug 2018. Available from: https://www.drugs.com/clinical_trials/alnylam-presents-new-clinical-results-apollo-phase-3-study-patisiran-16th-international-symposium-17805.html

  226. Drugs.com (2018) Available from: https://www.drugs.com/history/onpattro.html

  227. Bobbin ML, Rossi JJ (2016) RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu Rev Pharmacol Toxicol 56:103–122

    Article  CAS  PubMed  Google Scholar 

  228. Gilleron J et al (2013) Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol 31(7):638–646

    Article  CAS  PubMed  Google Scholar 

  229. Wittrup A et al (2015) Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat Biotechnol 33(8):870–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Bartlett DW, Davis ME (2006) Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 34(1):322–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Tatiparti K et al (2017) siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials (Basel) 7(4):322–33

    Article  PubMed Central  CAS  Google Scholar 

  232. Han L, Tang C, Yin C (2014) Oral delivery of shRNA and siRNA via multifunctional polymeric nanoparticles for synergistic cancer therapy. Biomaterials 35(15):4589–4600

    Article  PubMed  CAS  Google Scholar 

  233. Akinc A et al (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26(5):561–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Semple SC et al (2010) Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 28(2):172–176

    Article  CAS  PubMed  Google Scholar 

  235. Shi B et al (2011) Biodistribution of small interfering RNA at the organ and cellular levels after lipid nanoparticle-mediated delivery. J Histochem Cytochem 59(8):727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Morrissey DV et al (2005) Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41(6):1349–1356

    Article  CAS  PubMed  Google Scholar 

  237. Gooding M et al (2012) siRNA delivery: from lipids to cell-penetrating peptides and their mimics. Chem Biol Drug Des 80(6):787–809

    Article  CAS  PubMed  Google Scholar 

  238. Akinc A et al (2010) Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther 18(7):1357–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Czech MP, Aouadi M, Tesz GJ (2011) RNAi-based therapeutic strategies for metabolic disease. Nat Rev Endocrinol 7(8):473–484

    Article  CAS  PubMed  Google Scholar 

  240. Robbins M, Judge A, MacLachlan I (2009) siRNA and innate immunity. Oligonucleotides 19(2):89–102

    Article  CAS  PubMed  Google Scholar 

  241. Chiu YL, Rana TM (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9(9):1034–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Morrissey DV et al (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23(8):1002–1007

    Article  CAS  PubMed  Google Scholar 

  243. Judge AD et al (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 13(3):494–505

    Article  CAS  PubMed  Google Scholar 

  244. Judge AD et al (2009) Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J Clin Invest 119(3):661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Jackson AL et al (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12(7):1197–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Kenski DM et al (2012) siRNA-optimized modifications for enhanced in vivo activity. Mol Ther Nucleic Acids 1:e5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Tai W, Gao X (2017) Functional peptides for siRNA delivery. Adv Drug Deliv Rev 110-111:157–168

    Article  CAS  PubMed  Google Scholar 

  248. Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6(4):287–296

    Article  PubMed  PubMed Central  Google Scholar 

  249. Boado RJ (2005) RNA interference and nonviral targeted gene therapy of experimental brain cancer. NeuroRx 2(1):139–150

    Article  PubMed  PubMed Central  Google Scholar 

  250. Rossi JJ (2006) RNAi therapeutics: SNALPing siRNAs in vivo. Gene Ther 13(7):583–584

    Article  CAS  PubMed  Google Scholar 

  251. Li Z, Loh XJ (2016) Recent advances of using polyhydroxyalkanoate-based nanovehicles as therapeutic delivery carriers. Nanomed Nanobiotechnol 9(3):e1429

    Google Scholar 

  252. Coutinho MF et al (2016) Genetic substrate reduction therapy: a promising approach for lysosomal storage disorders. Diseases 4(4):1429

    Article  PubMed Central  CAS  Google Scholar 

  253. Buduru S et al (2018) RNA interference: new mechanistic and biochemical insights with application in oral cancer therapy. Int J Nanomedicine 13:3397–3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Song E et al (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23(6):709–717

    Article  CAS  PubMed  Google Scholar 

  255. Peer D et al (2007) Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci USA 104(10):4095–4100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Peer D et al (2008) Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319(5863):627–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. McNamara JO 2nd et al (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24(8):1005–1015

    Article  CAS  PubMed  Google Scholar 

  258. Berezhnoy A et al (2014) Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. J Clin Invest 124(1):188–197

    Article  CAS  PubMed  Google Scholar 

  259. Wheeler LA et al (2011) Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. J Clin Invest 121(6):2401–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Soutschek J et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432(7014):173–178

    Article  CAS  PubMed  Google Scholar 

  261. Kortylewski M et al (2009) In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol 27(10):925–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Davis ME et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Wong SC et al (2012) Co-injection of a targeted, reversibly masked endosomolytic polymer dramatically improves the efficacy of cholesterol-conjugated small interfering RNAs in vivo. Nucleic Acid Ther 22(6):380–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Nair JK et al (2014) Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc 136(49):16958–16961

    Article  CAS  PubMed  Google Scholar 

  265. Manoharan M(2014) GalNAc-siRNA with enhanced stabilization chemistry: ESC-GalNAc-siRNA. Available from: http://www.alnylam.com/web/assets/ALNY-ESC-GalNAc-siRNA-TIDES-May2014-Capella.pdf

    Google Scholar 

  266. Roberts TC et al (2016) Synthetic SiRNA delivery: progress and prospects. Methods Mol Biol 1364:291–310

    Article  CAS  PubMed  Google Scholar 

  267. Bruun J et al (2015) Investigation of enzyme-sensitive lipid nanoparticles for delivery of siRNA to blood-brain barrier and glioma cells. Int J Nanomedicine 10:5995–6008

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Serramia MJ et al (2015) In vivo delivery of siRNA to the brain by carbosilane dendrimer. J Control Release 200:60–70

    Article  CAS  PubMed  Google Scholar 

  269. Bruck J et al (2015) Cholesterol modification of p40-specific small interfering RNA enables therapeutic targeting of dendritic cells. J Immunol 195(5):2216–2223

    Article  PubMed  CAS  Google Scholar 

  270. Haroon MM et al (2016) A designed recombinant fusion protein for targeted delivery of siRNA to the mouse brain. J Control Release 228:120–131

    Article  CAS  PubMed  Google Scholar 

  271. Gabathuler R (2012) New protein vectors for physiological transfer of therapeutic agents to the central nervous system. Biol Aujourdhui 206(3):191–203

    Article  CAS  PubMed  Google Scholar 

  272. Gabathuler R (2015) Using a peptide derived from transcend (mtf, p97) to deliver biologics to the cns using a physiologic pathway. Available from: http://www.brains4brain.eu/wp-content/uploads/2015/01/9th-B4B-Workshop-Scientific-Programme.pdf

    Google Scholar 

  273. Unniyampurath U, Pilankatta R, Krishnan MN (2016) RNA interference in the age of CRISPR: will CRISPR interfere with RNAi? Int J Mol Sci 17(3):291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Barrangou R et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  PubMed  Google Scholar 

  275. Sorek R, Kunin V, Hugenholtz P (2008) CRISPR–a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6(3):181–186

    Article  CAS  PubMed  Google Scholar 

  276. Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8:172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Cornu TI, Mussolino C, Cathomen T (2017) Refining strategies to translate genome editing to the clinic. Nat Med 23(4):415–423

    Article  CAS  PubMed  Google Scholar 

  280. Yin H et al (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32(6):551–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Nelson CE et al (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(6271):403–407

    Article  CAS  PubMed  Google Scholar 

  282. Tabebordbar M et al (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411

    Article  CAS  PubMed  Google Scholar 

  283. Zetsche B et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Sahin U, Kariko K, Tureci O (2014) mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov 13(10):759–780

    Article  CAS  PubMed  Google Scholar 

  285. Stanton MG (2018) Current status of messenger RNA delivery systems. Nucleic Acid Ther 28(3):158–165

    Article  CAS  PubMed  Google Scholar 

  286. Pardi N et al (2018) mRNA vaccines – a new era in vaccinology. Nat Rev Drug Discov 17(4):261–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Heiser A et al (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 109(3):409–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Morse MA et al (2002) The feasibility and safety of immunotherapy with dendritic cells loaded with CEA mRNA following neoadjuvant chemoradiotherapy and resection of pancreatic cancer. Int J Gastrointest Cancer 32(1):1–6

    Article  CAS  PubMed  Google Scholar 

  289. Morse MA et al (2003) Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA. Cancer Investig 21(3):341–349

    Article  CAS  Google Scholar 

  290. Weide B et al (2009) Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 32(5):498–507

    Article  CAS  PubMed  Google Scholar 

  291. Rittig SM et al (2011) Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 19(5):990–999

    Article  CAS  PubMed  Google Scholar 

  292. Kübler, et al. (2011) Final analysis of a phase I/IIa study with CV9103, an intradermally administered prostate cancer immunotherapy based on self-adjuvanted mRNA. J Clin Oncol 29:4535

    Article  Google Scholar 

  293. Sebastian M et al (2012) Messenger RNA vaccination and B cell responses in NSCLC patients. J Clin Oncol 30(15_suppl):2573–2573

    Google Scholar 

  294. Wilgenhof S et al (2013) A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 24(10):2686–2693

    Article  CAS  PubMed  Google Scholar 

  295. Devoldere J et al (2016) Evading innate immunity in nonviral mRNA delivery: don’t shoot the messenger. Drug Discov Today 21(1):11–25

    Article  CAS  PubMed  Google Scholar 

  296. Granot Y, Peer D (2017) Delivering the right message: challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics-An innate immune system standpoint. Semin Immunol 34:68–77

    Article  CAS  PubMed  Google Scholar 

  297. Zangi L et al (2013) Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 31(10):898–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Baba M et al (2015) Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles. J Control Release 201:41–48

    Article  CAS  PubMed  Google Scholar 

  299. Matsui A et al (2015) Messenger RNA-based therapeutics for the treatment of apoptosis-associated diseases. Sci Rep 5:15810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. DeRosa F et al (2016) Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system. Gene Ther 23(10):699–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Ramaswamy S et al (2017) Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc Natl Acad Sci USA 114(10):E1941–E1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Kormann MS et al (2011) Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 29(2):154–157

    Article  CAS  PubMed  Google Scholar 

  303. Wang Y et al (2013) Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol Ther 21(2):358–367

    Article  CAS  PubMed  Google Scholar 

  304. Schrom E et al (2017) Translation of angiotensin-converting enzyme 2 upon liver- and lung-targeted delivery of optimized chemically modified mRNA. Mol Ther Nucleic Acids 7:350–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. An D et al (2017) Systemic messenger RNA therapy as a treatment for methylmalonic acidemia. Cell Rep 21(12):3548–3558

    Article  CAS  PubMed  Google Scholar 

  306. Patel S et al (2017) Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA. Nano Lett 17(9):5711–5718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  PubMed  Google Scholar 

  308. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  PubMed  Google Scholar 

  309. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45(9):1628–1650

    CAS  PubMed  Google Scholar 

  310. Yu Y et al (2016) Molecular selection, modification and development of therapeutic oligonucleotide aptamers. Int J Mol Sci 17(3):358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  311. Cruz-Toledo J et al (2012) Aptamer Base: a collaborative knowledge base to describe aptamers and SELEX experiments. Database (Oxford) 2012:bas006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coutinho, M.F., Matos, L., Santos, J.I., Alves, S. (2019). RNA Therapeutics: How Far Have We Gone?. In: Romão, L. (eds) The mRNA Metabolism in Human Disease. Advances in Experimental Medicine and Biology, vol 1157. Springer, Cham. https://doi.org/10.1007/978-3-030-19966-1_7

Download citation

Publish with us

Policies and ethics