Skip to main content

Nonsense-Mediated mRNA Decay in Development, Stress and Cancer

  • Chapter
  • First Online:
The mRNA Metabolism in Human Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1157))

Abstract

Nonsense-mediated mRNA decay (NMD) is a well characterized eukaryotic mRNA degradation pathway, responsible for the identification and degradation of transcripts harboring translation termination codons in premature contexts. Transcriptome-wide studies revealed that NMD is not only an mRNA surveillance pathway as initially thought, but is also a post-transcriptional regulatory mechanism of gene expression, as it fine-tunes the transcript levels of many wild-type genes. Hence, NMD contributes to the regulation of many essential biological processes, including pathophysiological mechanisms. In this chapter we discuss the importance of NMD and of its regulation to organism development and its link to the cellular stress responses, like the unfolded protein response (UPR) and the integrated stress response (ISR). Additionally, we describe how tumor cells have explored both NMD functions to promote tumorigenesis. Using published data and databases, we have also performed a network-based approach that further supports the link between NMD and these (patho) physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. da Costa PJ, Menezes J, Romão L (2017) The role of alternative splicing coupled to nonsense-mediated mRNA decay in human disease. Int J Biochem Cell Biol 91:168–175

    Article  CAS  PubMed  Google Scholar 

  2. Popp MW, Maquat LE (2018) Nonsense-mediated mRNA Decay and Cancer. Curr Opin Genet Dev 48:44–50

    Article  CAS  PubMed  Google Scholar 

  3. Lykke-Andersen S, Jensen TH (2015) Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol 16:665–677

    Article  CAS  PubMed  Google Scholar 

  4. Popp MW-L, Maquat LE (2013) Organizing principles of mammalian nonsense-mediated mRNA decay. Annu Rev Genet 47:139–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goetz AE, Wilkinson M (2017) Stress and the nonsense-mediated RNA decay pathway. Cell Mol Life Sci 74:3509–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tani H, Imamachi N, Salam KA, Mizutani R, Ijiri K, Irie T, Yada T, Suzuki Y, Akimitsu N (2012) Identification of hundreds of novel UPF1 target transcripts by direct determination of whole transcriptome stability. RNA Biol 9:1370–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chan W-K, Bhalla AD, Le Hir H, Nguyen LS, Huang L, Gécz J, Wilkinson MF (2009) A UPF3-mediated regulatory switch that maintains RNA surveillance. Nat Struct Mol Biol 16:747–753

    Article  CAS  PubMed  Google Scholar 

  8. Weischenfeldt J, Damgaard I, Bryder D, Theilgaard-Monch K, Thoren LA, Nielsen FC, Jacobsen SEW, Nerlov C, Porse BT (2008) NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes Dev 22:1381–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chan W-K, Huang L, Gudikote JP, Chang Y-F, Imam JS, MacLean JA, Wilkinson MF (2007) An alternative branch of the nonsense-mediated decay pathway. EMBO J 26:1820–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wittmann J, Hol EM, Jäck H-M (2006) hUPF2 silencing identifies physiologic substrates of mammalian nonsense-mediated mRNA decay. Mol Cell Biol 26:1272–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mendell JT, Sharifi NA, Meyers JL, Martinez-Murillo F, Dietz HC (2004) Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat Genet 36:1073–1078

    Article  CAS  PubMed  Google Scholar 

  12. He F, Li X, Spatrick P, Casillo R, Dong S, Jacobson A (2003) Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5′ to 3’ mRNA decay pathways in yeast. Mol Cell 12:1439–1452

    Article  CAS  PubMed  Google Scholar 

  13. Lelivelt MJ, Culbertson MR (1999) Yeast Upf proteins required for RNA surveillance affect global expression of the yeast transcriptome. Mol Cell Biol 19:6710–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yepiskoposyan H, Aeschimann F, Nilsson D, Okoniewski M, Muhlemann O (2011) Autoregulation of the nonsense-mediated mRNA decay pathway in human cells. RNA 17:2108–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Colombo M, Karousis ED, Bourquin J, Bruggmann R, Mühlemann O (2017) Transcriptome-wide identification of NMD-targeted human mRNAs reveals extensive redundancy between SMG6- and SMG7-mediated degradation pathways. RNA 23:189–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Losson R, Lacroute F (1979) Interference of nonsense mutations with eukaryotic messenger RNA stability. Proc Natl Acad Sci 76:5134–5137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maquat LE, Kinniburgh AJ, Rachmilewitz EA, Ross J (1981) Unstable β-globin mRNA in mRNA-deficient β0 thalassemia. Cell 27:543–553

    Article  CAS  PubMed  Google Scholar 

  18. Miller JN, Pearce DA (2014) Nonsense-mediated decay in genetic disease: Friend or foe? Mutat Res Rev Mutat Res 762:52–64

    Article  CAS  PubMed  Google Scholar 

  19. Metze S, Herzog VA, Ruepp M-D, Mühlemann O (2013) Comparison of EJC-enhanced and EJC-independent NMD in human cells reveals two partially redundant degradation pathways. RNA 19:1432–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Le Hir H, Izaurralde E, Maquat LE, Moore MJ (2000) The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 19:6860–6869

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alexandrov A, Colognori D, Shu M-D, Steitz JA (2012) Human spliceosomal protein CWC22 plays a role in coupling splicing to exon junction complex deposition and nonsense-mediated decay. Proc Natl Acad Sci 109:21313–21318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Le Hir H, Gatfield D, Izaurralde E, Moore MJ (2001) The exon–exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J 20:4987–4997

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chan W, Huang L, Gudikote JP, Chang Y, Imam JS, MacLean JA, Wilkinson MF (2007) An alternative branch of the nonsense-mediated decay pathway. EMBO J 26:1820–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ishigaki Y, Li X, Serin G, Maquat LE (2001) Evidence for a Pioneer Round of mRNA Translation. Cell 106:607–617

    Article  CAS  PubMed  Google Scholar 

  25. Lejeune F, Ishigaki Y, Li X, Maquat LE (2002) The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J 21:3536–3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gehring NH, Lamprinaki S, Kulozik AE, Hentze MW (2009) Disassembly of exon junction complexes by PYM. Cell 137:536–548

    Article  CAS  PubMed  Google Scholar 

  27. Kashima I, Yamashita A, Izumi N, Kataoka N, Morishita R, Hoshino S, Ohno M, Dreyfuss G, Ohno S (2006) Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev 20:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buchwald G, Ebert J, Basquin C, Sauliere J, Jayachandran U, Bono F, Le Hir H, Conti E (2010) Insights into the recruitment of the NMD machinery from the crystal structure of a core EJC-UPF3b complex. Proc Natl Acad Sci 107:10050–10055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yamashita A, Izumi N, Kashima I, Ohnishi T, Saari B, Katsuhata Y, Muramatsu R, Morita T, Iwamatsu A, Hachiya T, Kurata R, Hirano H, Anderson P, Ohno S (2009) SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay. Genes Dev 23:1091–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shum EY, Jones SH, Shao A, Dumdie J, Krause MD, Chan W-K, Lou C-H, Espinoza JL, Song H-W, Phan MH, Ramaiah M, Huang L, McCarrey JR, Peterson KJ, De Rooij DG, Cook-andersen H, Wilkinson MF (2016) The antagonistic gene paralogs Upf3a and Upf3b govern nonsense-mediated RNA decay. Cell 165:382–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Neu-Yilik G, Raimondeau E, Eliseev B, Yeramala L, Amthor B, Deniaud A, Huard K, Kerschgens K, Hentze MW, Schaffitzel C, Kulozik AE (2017) Dual function of UPF3B in early and late translation termination. EMBO J 36:2968–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mühlemann O, Karousis ED (2017) New functions in translation termination uncovered for NMD factor UPF3B. EMBO J 36:2928–2930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Arias-Palomo E, Yamashita A, Fernández IS, Núñez-Ramírez R, Bamba Y, Izumi N, Ohno S, Llorca O (2011) The nonsense-mediated mRNA decay SMG-1 kinase is regulated by large-scale conformational changes controlled by SMG-8. Genes Dev 25:153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chamieh H, Ballut L, Bonneau F, Le Hir H (2008) NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Nat Struct Mol Biol 15:85–93

    Article  CAS  PubMed  Google Scholar 

  35. Deniaud A, Karuppasamy M, Bock T, Masiulis S, Huard K, Garzoni F, Kerschgens K, Hentze MW, Kulozik AE, Beck M, Neu-Yilik G, Schaffitzel C (2015) A network of SMG-8, SMG-9 and SMG-1 C-terminal insertion domain regulates UPF1 substrate recruitment and phosphorylation. Nucleic Acids Res 43:7600–7611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Melero R, Uchiyama A, Castaño R, Kataoka N, Kurosawa H, Ohno S, Yamashita A, Llorca O (2014) Structures of SMG1-UPFs complexes: SMG1 contributes to regulate UPF2-dependent activation of UPF1 in NMD. Structure 22:1105–1119

    Article  CAS  PubMed  Google Scholar 

  37. Okada-Katsuhata Y, Yamashita A, Kutsuzawa K, Izumi N, Hirahara F, Ohno S (2012) N-and C-terminal Upf1 phosphorylations create binding platforms for SMG-6 and SMG-5:SMG-7 during NMD. Nucleic Acids Res 40:1251–1266

    Article  CAS  PubMed  Google Scholar 

  38. Hug N, Cáceres JF (2014) The RNA Helicase DHX34 Activates NMD by promoting a transition from the surveillance to the decay-inducing complex. Cell Rep 8:1845–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Melero R, Hug N, Lopez-Perrote A, Yamashita A, Caceres JF, Llorca O (2016) The RNA helicase DHX34 functions as a scaffold for SMG1-mediated UPF1 phosphorylation. Nat Commun 7:10585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cho H, Kim KM, Kim YK (2009) Human proline-rich nuclear receptor coregulatory protein 2 mediates an interaction between mRNA surveillance machinery and decapping complex. Mol Cell 33:75–86

    Article  CAS  PubMed  Google Scholar 

  41. Eberle AB, Lykke-Andersen S, Mühlemann O, Jensen TH (2009) SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat Struct Mol Biol 16:49–55

    Article  CAS  PubMed  Google Scholar 

  42. Huntzinger E, Kashima I, Fauser M, Sauliere J, Izaurralde E (2008) SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. RNA 14:2609–2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Glavan F, Behm-Ansmant I, Izaurralde E, Conti E (2006) Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex. EMBO J 25:5117–5125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boehm V, Haberman N, Ottens F, Ule J, Gehring NH (2014) 3′ UTR length and messenger ribonucleoprotein composition determine endocleavage efficiencies at termination codons. Cell Rep 9:555–568

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt SA, Foley PL, Jeong DH, Rymarquis LA, Doyle F, Tenenbaum SA, Belasco JG, Green PJ (2015) Identification of SMG6 cleavage sites and a preferred RNA cleavage motif by global analysis of endogenous NMD targets in human cells. Nucleic Acids Res 43:309–323

    Article  CAS  PubMed  Google Scholar 

  46. Lykke-Andersen S, Chen Y, Ardal BR, Lilje B, Waage J, Sandelin A, Jensen TH (2014) Human nonsense-mediated RNA decay initiates widely by endonucleolysis and targets snoRNA host genes. Genes Dev 28:2498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Fukuhara N, Ebert J, Unterholzner L, Lindner D, Izaurralde E, Conti E (2005) SMG7 is a 14-3-3-like adaptor in the nonsense-mediated mRNA decay pathway. Mol Cell 17:537–547

    Article  CAS  PubMed  Google Scholar 

  48. Gatfield D, Izaurralde E (2004) Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature 429:575–578

    Article  CAS  PubMed  Google Scholar 

  49. Lejeune F, Li X, Maquat LE (2003) Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol Cell 12:675–687

    Article  CAS  PubMed  Google Scholar 

  50. Unterholzner L, Izaurralde E (2004) SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol Cell 16:587–596

    Article  CAS  PubMed  Google Scholar 

  51. Eberle AB, Stalder L, Mathys H, Orozco RZ, Mühlemann O (2008) Posttranscriptional gene regulation by spatial rearrangement of the 3′ untranslated region. PLoS Biol 6:849–859

    Article  CAS  Google Scholar 

  52. Ivanov PV, Gehring NH, Kunz JB, Hentze MW, Kulozik AE (2008) Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. EMBO J 27:736–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Singh G, Rebbapragada I, Lykke-Andersen J (2008) A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol 6:e111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Silva AL, Ribeiro P, Inácio A, Liebhaber SA, Romão L (2008) Proximity of the poly(A)-binding protein to a premature termination codon inhibits mammalian nonsense-mediated mRNA decay. RNA 14:563–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang W, Czaplinski K, Rao Y, Peltz SW (2001) The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J 20:880–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kononenko AV, Mitkevich VA, Atkinson GC, Tenson T, Dubovaya VI, Frolova LY, Makarov AA, Hauryliuk V (2010) GTP-dependent structural rearrangement of the eRF1:eRF3 complex and eRF3 sequence motifs essential for PABP binding. Nucleic Acids Res 38:548–558

    Article  CAS  PubMed  Google Scholar 

  57. Fatscher T, Boehm V, Weiche B, Gehring NH (2014) The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay. RNA 20:1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roque S, Cerciat M, Gaugué S, Mora L, Floch AG, De Zamaroczy M, Heurgué-Hamard V, Kervestin S (2015) Interaction between the poly(A)-binding protein Pab1 and the eukaryotic release factor eRF3 regulates translation termination but not mRNA decay in Saccharomyces cerevisiae. RNA 21:124–134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Joncourt R, Eberle AB, Rufener SC, Mühlemann O (2014) Eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay by two genetically separable mechanisms. PLoS One 9:e104391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Gehring NH, Kunz JB, Neu-Yilik G, Breit S, Viegas MH, Hentze MW, Kulozik AE (2005) Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol Cell 20:65–75

    Article  CAS  PubMed  Google Scholar 

  61. Bühler M, Steiner S, Mohn F, Paillusson A, Mühlemann O (2006) EJC-independent degradation of nonsense immunoglobulin-μ mRNA depends on 3′ UTR length. Nat Struct Mol Biol 13:462–464

    Article  PubMed  CAS  Google Scholar 

  62. Huang L, Lou C-H, Chan W, Shum EY, Shao A, Stone E, Karam R, Song H-W, Wilkinson MF (2011) RNA homeostasis governed by cell type-specific and branched feedback loops acting on NMD. Mol Cell 43:950–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aznarez I, Nomakuchi TT, Tetenbaum-Novatt, Jaclyn Rahman MA, Fregoso O, Rees H, Krainer AR (2018) Mechanism of Nonsense-Mediated mRNA Decay Stimulation by Splicing Factor SRSF1. Cell Rep 23:2186–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maquat LE (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5:89–99

    Article  CAS  PubMed  Google Scholar 

  65. Oliveira CC, McCarthy JE (1995) The relationship between eukaryotic translation and mRNA stability. A short upstream open reading frame strongly inhibits translational initiation and greatly accelerates mRNA degradation in the yeast Saccharomyces cerevisiae. J Biol Chem 270:8936–8943

    Article  CAS  PubMed  Google Scholar 

  66. Hogg JR, Goff SP (2010) Upf1 senses 3’UTR length to potentiate mRNA decay. Cell 143:379–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Amrani N, Ghosh S, Mangus DA, Jacobson A (2008) Translation factors promote the formation of two states of the closed-loop mRNP. Nature 453:1276–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peixeiro I, Inácio Â, Barbosa C, Silva AL, Liebhaber SA, Romão L (2012) Interaction of PABPC1 with the translation initiation complex is critical to the NMD resistance of AUG-proximal nonsense mutations. Nucleic Acids Res 40:1160–1173

    Article  CAS  PubMed  Google Scholar 

  69. Nasif S, Contu L, Mühlemann O (2018) Beyond quality control: the role of nonsense-mediated mRNA decay (NMD) in regulating gene expression. Semin Cell Dev Biol 75:78–87

    Article  CAS  PubMed  Google Scholar 

  70. Medghalchi SM, Frischmeyer PA, Mendell JT, Kelly AG, Lawler AM, Dietz HC (2001) Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum Mol Genet 10:99–105

    Article  CAS  PubMed  Google Scholar 

  71. Li T, Shi Y, Wang P, Guachalla LM, Sun B, Joerss T, Chen Y-S, Groth M, Krueger A, Platzer M, Yang Y-G, Rudolph KL, Wang Z-Q (2015) Smg6/Est1 licenses embryonic stem cell differentiation via nonsense-mediated mRNA decay. EMBO J 34:1630–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McIlwain DR, Pan Q, Reilly PT, Elia AJ, McCracken S, Wakeham AC, Itie-Youten A, Blencowe BJ, Mak TW (2010) Smg1 is required for embryogenesis and regulates diverse genes via alternative splicing coupled to nonsense-mediated mRNA decay. Proc Natl Acad Sci 107:12186–12191

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shaheen R, Anazi S, Ben-Omran T, Seidahmed MZ, Caddle LB, Palmer K, Ali R, Alshidi T, Hagos S, Goodwin L, Hashem M, Wakil SM, Abouelhoda M, Colak D, Murray SA, Alkuraya FS (2016) Mutations in SMG9, encoding an essential component of nonsense-mediated decay machinery, cause a multiple congenital anomaly syndrome in humans and mice. Am J Hum Genet 98:643–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801

    Article  CAS  PubMed  Google Scholar 

  75. Imamachi N, Tani H, Akimitsu N (2012) Up-frameshift protein 1 (UPF1): multitalented entertainer in RNA decay. Drug Discov Ther 6:55–61

    CAS  PubMed  Google Scholar 

  76. Nelson JO, Moore KA, Chapin A, Hollien J, Metzstein MM (2016) Degradation of Gadd45 mRNA by nonsense-mediated decay is essential for viability. elife 5:e12876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Tani H, Torimura M, Akimitsu N (2013) The RNA degradation pathway regulates the function of GAS5 a non-coding RNA in mammalian cells. PLoS One 8:e55684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mourtada-Maarabouni M, Williams GT (2013) Growth arrest on inhibition of nonsense-mediated decay is mediated by noncoding RNA GAS5. Biomed Res Int 2013:358015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Huang L, Wilkinson MF (2012) Regulation of nonsense-mediated mRNA decay. Wiley Interdiscip Rev RNA 3:807–828

    Article  CAS  PubMed  Google Scholar 

  80. Lou CH, Dumdie J, Goetz A, Shum EY, Brafman D, Liao X, Mora-Castilla S, Ramaiah M, Cook-Andersen H, Laurent L, Wilkinson MF (2016) Nonsense-mediated RNA decay influences human embryonic stem cell fate. Stem Cell Reports 6:844–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thoren LA, Nørgaard GA, Weischenfeldt J, Waage J, Jakobsen JS, Damgaard I, Bergström FC, Blom AM, Borup R, Bisgaard HC, Porse BT (2010) UPF2 is a critical regulator of liver development, function and regeneration. PLoS One 5:e11650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Bao J, Tang C, Yuan S, Porse BT, Yan W (2015) UPF2, a nonsense-mediated mRNA decay factor, is required for prepubertal Sertoli cell development and male fertility by ensuring fidelity of the transcriptome. Development 142:352–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bao J, Vitting-Seerup K, Waage J, Tang C, Ge Y, Porse BT, Yan W (2016) UPF2-dependent nonsense-mediated mRNA decay pathway is essential for spermatogenesis by selectively eliminating longer 3’UTR transcripts. PLoS Genet 12:e1005863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Fanourgakis G, Lesche M, Akpinar M, Dahl A, Jessberger R (2016) chromatoid body protein TDRD6 supports long 3’ UTR triggered nonsense mediated mRNA decay. PLoS Genet 12:e1005857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Kunz JB, Neu-Yilik G, Hentze MW, Kulozik AE, Gehring NH (2006) Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation. RNA 12:1015–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Turner JMA (2007) Meiotic sex chromosome inactivation. Development 134:1823–1831

    Article  CAS  PubMed  Google Scholar 

  87. Kim YK, Furic L, Parisien M, Major F, DesGroseillers L, Maquat LE (2007) Staufen1 regulates diverse classes of mammalian transcripts. EMBO J 26:2670–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gong C, Kim YK, Woeller CF, Tang Y, Maquat LE (2009) SMD and NMD are competitive pathways that contribute to myogenesis: effects on PAX3 and myogenin mRNAs. Genes Dev 23:54–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bruno IG, Karam R, Huang L, Bhardwaj A, Lou CH, Shum EY, Song H-W, Corbett MA, Gifford WD, Gecz J, Pfaff SL, Wilkinson MF (2011) Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Mol Cell 42:500–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lou CH, Shao A, Shum EY, Espinoza JL, Huang L, Karam R, Wilkinson MF (2014) Posttranscriptional control of the stem cell and neurogenic programs by the nonsense-mediated RNA decay pathway. Cell Rep 6:748–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Preitner N, Quan J, Flanagan JG (2013) This message will self-destruct: NMD regulates axon guidance. Cell 153:1185–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Colak D, Ji S-J, Porse BT, Jaffrey SR (2013) Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay. Cell 153:1252–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nguyen LS, Jolly L, Shoubridge C, Chan WK, Huang L, Laumonnier F, Raynaud M, Hackett A, Field M, Rodriguez J, Srivastava AK, Lee Y, Long R, Addington AM, Rapoport JL, Suren S, Hahn CN, Gamble J, Wilkinson MF, Corbett MA, Gecz J (2012) Transcriptome profiling of UPF3B/NMD-deficient lymphoblastoid cells from patients with various forms of intellectual disability. Mol Psychiatry 17:1103–1115

    Article  CAS  PubMed  Google Scholar 

  94. Laumonnier F, Shoubridge C, Antar C, Nguyen LS, Van Esch H, Kleefstra T, Briault S, Fryns JP, Hamel B, Chelly J, Ropers HH, Ronce N, Blesson S, Moraine C, Gécz J, Raynaud M (2010) Mutations of the UPF3B gene, which encodes a protein widely expressed in neurons, are associated with nonspecific mental retardation with or without autism. Mol Psychiatry 15:767–776

    Article  CAS  PubMed  Google Scholar 

  95. Tarpey PS, Lucy Raymond F, Nguyen LS, Rodriguez J, Hackett A, Vandeleur L, Smith R, Shoubridge C, Edkins S, Stevens C, O’Meara S, Tofts C, Barthorpe S, Buck G, Cole J, Halliday K, Hills K, Jones D, Mironenko T, Perry J, Varian J, West S, Widaa S, Teague J, Dicks E, Butler A, Menzies A, Richardson D, Jenkinson A, Shepherd R, Raine K, Moon J, Luo Y, Parnau J, Bhat SS, Gardner A, Corbett M, Brooks D, Thomas P, Parkinson-Lawrence E, Porteous ME, Warner JP, Sanderson T, Pearson P, Simensen RJ, Skinner C, Hoganson G, Superneau D, Wooster R, Bobrow M, Turner G, Stevenson RE, Schwartz CE, Andrew Futreal P, Srivastava AK, Stratton MR, Gécz J (2007) Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nat Genet 39:1127–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nguyen LS, Kim H-G, Rosenfeld JA, Shen Y, Gusella JF, Lacassie Y, Layman LC, Shaffer LG, Gécz J (2013) Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders. Hum Mol Genet 22:1816–1825

    Article  CAS  PubMed  Google Scholar 

  97. Wang D, Zavadil J, Martin L, Parisi F, Friedman E, Levy D, Harding H, Ron D, Gardner LB (2011) Inhibition of nonsense-mediated RNA decay by the tumor microenvironment promotes tumorigenesis. Mol Cell Biol 31:3670–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Oren YS, McClure ML, Rowe SM, Sorscher EJ, Bester AC, Manor M, Kerem E, Rivlin J, Zahdeh F, Mann M, Geiger T, Kerem B (2014) The unfolded protein response affects readthrough of premature termination codons. EMBO Mol Med 6:685–701

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM (2016) The integrated stress response. EMBO Rep 17:1374–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102

    Article  CAS  PubMed  Google Scholar 

  101. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  CAS  PubMed  Google Scholar 

  102. Karam R, Lou C-H, Kroeger H, Huang L, Lin JH, Wilkinson MF (2015) The unfolded protein response is shaped by the NMD pathway. EMBO Rep 16:599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gardner LB (2008) Hypoxic inhibition of nonsense-mediated RNA decay regulates gene expression and the integrated stress response. Mol Cell Biol 28:3729–3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Martin L, Gardner LB (2015) Stress-induced inhibition of nonsense-mediated RNA decay regulates intracellular cystine transport and intracellular glutathione through regulation of the cystine/glutamate exchanger SLC7A11. Oncogene 34:4211–4218

    Article  CAS  PubMed  Google Scholar 

  105. Wang D, Wengrod J, Gardner LB (2011) Overexpression of the c-myc oncogene inhibits nonsense-mediated RNA decay in B lymphocytes. J Biol Chem 286:40038–40043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li Z, Vuong JK, Zhang M, Stork C, Zheng S (2017) Inhibition of nonsense-mediated RNA decay by ER stress. RNA 23:378–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sieber J, Hauer C, Bhuvanagiri M, Leicht S, Krijgsveld J, Neu-Yilik G, Hentze MW, Kulozik AE (2016) Proteomic analysis reveals branch-specific regulation of the unfolded protein response by nonsense-mediated mRNA decay. Mol Cell Proteomics 15:1584–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Buzina A, Shulman MJ (1999) Infrequent translation of a nonsense codon is sufficient to decrease mRNA level. Mol Biol Cell 10:515–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Karam R, Wengrod J, Gardner LB, Wilkinson MF (2013) Regulation of nonsense-mediated mRNA decay: implications for physiology and disease. Biochim Biophys Acta 1829:624–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zheng D, Chen C-YA, Shyu A-B (2011) Unraveling regulation and new components of human P-bodies through a protein interaction framework and experimental validation. RNA 17:1619–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McEwen E, Kedersha N, Song B, Scheuner D, Gilks N, Han A, Chen JJ, Anderson P, Kaufman RJ (2005) Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem 280:16925–16933

    Article  CAS  PubMed  Google Scholar 

  112. Kimball SR, Horetsky RL, Ron D, Jefferson LS, Harding HP (2003) Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am J Physiol Physiol 284:C273–C284

    Article  CAS  Google Scholar 

  113. Brown JAL, Roberts TL, Richards R, Woods R, Birrell G, Lim YC, Ohno S, Yamashita A, Abraham RT, Gueven N, Lavin MF (2011) A novel role for hSMG-1 in stress granule formation. Mol Cell Biol 31:4417–4429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jia J, Werkmeister E, Gonzalez-Hilarion S, Leroy C, Gruenert DC, Lafont F, Tulasne D, Lejeune F (2017) Premature termination codon readthrough in human cells occurs in novel cytoplasmic foci and requires UPF proteins. J Cell Sci 130:3009–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vattem KM, Wek RC (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A 101:11269–11274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Palam LR, Baird TD, Wek RC (2011) Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J Biol Chem 286:10939–10949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Abastado JP, Miller PF, Jackson BM, Hinnebusch AG (1991) Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control. Mol Cell Biol 11:486–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sakaki K, Yoshina S, Shen X, Han J, DeSantis MR, Xiong M, Mitani S, Kaufman RJ (2012) RNA surveillance is required for endoplasmic reticulum homeostasis. Proc Natl Acad Sci U S A 109:8079–8084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gardner LB (2010) Nonsense-mediated RNA decay regulation by cellular stress: implications for tumorigenesis. Mol Cancer Res 8:295–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mort M, Ivanov D, Cooper DN, Chuzhanova NA (2008) A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat 29:1037–1047

    Article  CAS  PubMed  Google Scholar 

  121. Pinyol M, Bea S, Pla L, Ribrag V, Bosq J, Rosenwald A, Campo E, Jares P (2007) Inactivation of RB1 in mantle-cell lymphoma detected by nonsense-mediated mRNA decay pathway inhibition and microarray analysis. Blood 109:5422–5429

    Article  CAS  PubMed  Google Scholar 

  122. Anczuków O, Ware MD, Buisson M, Zetoune AB, Stoppa-Lyonnet D, Sinilnikova OM, Mazoyer S (2008) Does the nonsense-mediated mRNA decay mechanism prevent the synthesis of truncated BRCA1, CHK2, and p53 proteins? Hum Mutat 29:65–73

    Article  PubMed  CAS  Google Scholar 

  123. Karam R, Carvalho J, Bruno I, Graziadio C, Senz J, Huntsman D, Carneiro F, Seruca R, Wilkinson MF, Oliveira C (2008) The NMD mRNA surveillance pathway downregulates aberrant E-cadherin transcripts in gastric cancer cells and in CDH1 mutation carriers. Oncogene 27:4255–4260

    Article  CAS  PubMed  Google Scholar 

  124. Perrin-Vidoz L, Sinilnikova OM, Stoppa-Lyonnet D, Lenoir GM, Mazoyer S (2002) The nonsense-mediated mRNA decay pathway triggers degradation of most BRCA1 mRNAs bearing premature termination codons. Hum Mol Genet 11:2805–2814

    Article  CAS  PubMed  Google Scholar 

  125. Ware MD, DeSilva D, Sinilnikova OM, Stoppa-Lyonnet D, Tavtigian SV, Mazoyer S (2006) Does nonsense-mediated mRNA decay explain the ovarian cancer cluster region of the BRCA2 gene? Oncogene 25:323–328

    Article  CAS  PubMed  Google Scholar 

  126. Reddy JC, Morris JC, Wang J, English MA, Haber DA, Shi Y, Licht JD (1995) WT1-mediated transcriptional activation is inhibited by dominant negative mutant proteins. J Biol Chem 270:10878–10884

    Article  CAS  PubMed  Google Scholar 

  127. Liu C, Karam R, Zhou Y, Su F, Ji Y, Li G, Xu G, Lu L, Wang C, Song M, Zhu J, Wang Y, Zhao Y, Foo WC, Zuo M, Valasek MA, Javle M, Wilkinson MF, Lu Y (2014) The UPF1 RNA surveillance gene is commonly mutated in pancreatic adenosquamous carcinoma. Nat Med 20:596–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lindeboom RGH, Supek F, Lehner B (2016) The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat Genet 48:1112–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lu J, Plank T-D, Su F, Shi X, Liu C, Ji Y, Li S, Huynh A, Shi C, Zhu B, Yang G, Wu Y, Wilkinson MF, Lu Y (2016) The nonsense-mediated RNA decay pathway is disrupted in inflammatory myofibroblastic tumors. J Clin Invest 126:3058–3062

    Article  PubMed  PubMed Central  Google Scholar 

  130. Chang L, Li C, Guo T, Wang H, Ma W, Yuan Y, Liu Q, Ye Q, Liu Z (2016) The human RNA surveillance factor UPF1 regulates tumorigenesis by targeting Smad7 in hepatocellular carcinoma. J Exp Clin Cancer Res 35:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Cao L, Qi L, Zhang L, Song W, Yu Y, Xu C, Li L, Guo Y, Yang L, Liu C, Huang Q, Wang Y, Sun B, Meng B, Zhang B, Cao W (2017) Human nonsense-mediated RNA decay regulates EMT by targeting the TGF-ß signaling pathway in lung adenocarcinoma. Cancer Lett 403:246–259

    Article  CAS  PubMed  Google Scholar 

  132. Giampietri C, Petrungaro S, Conti S, Facchiano A, Filippini A, Ziparo E (2015) Cancer microenvironment and endoplasmic reticulum stress response. Mediat Inflamm 2015:417281

    Article  CAS  Google Scholar 

  133. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gélinas C, Fan Y, Nelson DA, Jin S, White E (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ye J, Kumanova M, Hart LS, Sloane K, Zhang H, De Panis DN, Bobrovnikova-Marjon E, Diehl JA, Ron D, Koumenis C (2010) The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J 29:2082–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wengrod J, Martin L, Wang D, Frischmeyer-Guerrerio P, Dietz HC, Gardner LB (2013) Inhibition of nonsense-mediated RNA decay activates autophagy. Mol Cell Biol 33:2128–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jia J, Furlan A, Gonzalez-Hilarion S, Leroy C, Gruenert DC, Tulasne D, Lejeune F (2015) Caspases shutdown nonsense-mediated mRNA decay during apoptosis. Cell Death Differ 22:1754–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Popp MW, Maquat LE (2015) Attenuation of nonsense-mediated mRNA decay facilitates the response to chemotherapeutics. Nat Commun 6:6632

    Article  CAS  PubMed  Google Scholar 

  138. Dotan-Cohen D, Letovsky S, Melkman AA, Kasif S (2009) Biological process linkage networks. PLoS One 4:e5313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, Stefancsik R, Harsha B, Kok CY, Jia M, Jubb H, Sondka Z, Thompson S, De T, Campbell PJ (2017) COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 45:D777–D783

    Article  CAS  PubMed  Google Scholar 

  140. COSMIC [Internet]. [cited 2018 Jul 18]. Available from: https://cancer.sanger.ac.uk / cosmic

  141. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, Milacic M, Roca CD, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Viteri G, Weiser J, Wu G, Stein L, Hermjakob H, D’Eustachio P (2018) The reactome pathway knowledgebase. Nucleic Acids Res 46:D649–D655

    Article  CAS  PubMed  Google Scholar 

  142. Reactome project [Internet]. [cited 2018 Jul 18]. Available from: https://reactome.org / download-data

  143. Hug N, Longman D, Cáceres JF (2016) Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res 44:1483–1495

    Article  PubMed  PubMed Central  Google Scholar 

  144. Yang X, Coulombe-Huntington J, Kang S, Sheynkman GM, Hao T, Richardson A, Sun S, Yang F, Shen YA, Murray RR, Spirohn K, Begg BE, Duran-Frigola M, MacWilliams A, Pevzner SJ, Zhong Q, Trigg SA, Tam S, Ghamsari L, Sahni N, Yi S, Rodriguez MD, Balcha D, Tan G, Costanzo M, Andrews B, Boone C, Zhou XJ, Salehi-Ashtiani K, Charloteaux B, Chen AA, Calderwood MA, Aloy P, Roth FP, Hill DE, Iakoucheva LM, Xia Y, Vidal M (2016) Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164:805–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rolland T, Taşan M, Charloteaux B, Pevzner SJ, Zhong Q, Sahni N, Yi S, Lemmens I, Fontanillo C, Mosca R, Kamburov A, Ghiassian SD, Yang X, Ghamsari L, Balcha D, Begg BE, Braun P, Brehme M, Broly MP, Carvunis A-R, Convery-Zupan D, Corominas R, Coulombe-Huntington J, Dann E, Dreze M, Dricot A, Fan C, Franzosa E, Gebreab F, Gutierrez BJ, Hardy MF, Jin M, Kang S, Kiros R, Lin GN, Luck K, MacWilliams A, Menche J, Murray RR, Palagi A, Poulin MM, Rambout X, Rasla J, Reichert P, Romero V, Ruyssinck E, Sahalie JM, Scholz A, Shah AA, Sharma A, Shen Y, Spirohn K, Tam S, Tejeda AO, Trigg SA, Twizere J-C, Vega K, Walsh J, Cusick ME, Xia Y, Barabási A-L, Iakoucheva LM, Aloy P, De Las Rivas J, Tavernier J, Calderwood MA, Hill DE, Hao T, Roth FP, Vidal M (2014) A proteome-scale map of the human interactome network. Cell 159:1212–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Venkatesan K, Rual J-F, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh K-I, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, de Smet A-S, Dann E, Smolyar A, Vinayagam A, Yu H, Szeto D, Borick H, Dricot A, Klitgord N, Murray RR, Lin C, Lalowski M, Timm J, Rau K, Boone C, Braun P, Cusick ME, Roth FP, Hill DE, Tavernier J, Wanker EE, Barabási A-L, Vidal M (2009) An empirical framework for binary interactome mapping. Nat Methods 6:83–90

    Article  CAS  PubMed  Google Scholar 

  147. Yu H, Tardivo L, Tam S, Weiner E, Gebreab F, Fan C, Svrzikapa N, Hirozane-Kishikawa T, Rietman E, Yang X, Sahalie J, Salehi-Ashtiani K, Hao T, Cusick ME, Hill DE, Roth FP, Braun P, Vidal M (2011) Next-generation sequencing to generate interactome datasets. Nat Methods 8:478–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437:1173–1178

    Article  CAS  PubMed  Google Scholar 

  149. Alonso-López D, Gutiérrez MA, Lopes KP, Prieto C, Santamaría R, De Las Rivas J (2016) APID interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks. Nucleic Acids Res 44:W529–W535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Türei D, Korcsmáros T, Saez-Rodriguez J (2016) OmniPath: guidelines and gateway for literature-curated signaling pathway resources. Nat Methods 13:966–967

    Article  PubMed  CAS  Google Scholar 

  151. Li T, Wernersson R, Hansen RB, Horn H, Mercer J, Slodkowicz G, Workman CT, Rigina O, Rapacki K, Stærfeldt HH, Brunak S, Jensen TS, Lage K (2017) A scored human protein-protein interaction network to catalyze genomic interpretation. Nat Methods 14:61–64

    Article  CAS  PubMed  Google Scholar 

  152. Martinez NJ, Walhout AJM (2009) The interplay between transcription factors and microRNAs in genome-scale regulatory networks. BioEssays 31:435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Xu Y, Yue W, Yao Shugart Y, Li S, Cai L, Li Q, Cheng Z, Wang G, Zhou Z, Jin C, Yuan J, Tian L, Wang J, Zhang K, Zhang K, Liu S, Song Y, Zhang F (2016) Exploring transcription factors-microRNAs co-regulation networks in schizophrenia. Schizophr Bull 42:1037–1045

    Article  PubMed  Google Scholar 

  154. Chou C-H, Shrestha S, Yang C-D, Chang N-W, Lin Y-L, Liao K-W, Huang W-C, Sun T-H, Tu S-J, Lee W-H, Chiew M-Y, Tai C-S, Wei T-Y, Tsai T-R, Huang H-T, Wang C-Y, Wu H-Y, Ho S-Y, Chen P-R, Chuang C-H, Hsieh P-J, Wu Y-S, Chen W-L, Li M-J, Wu Y-C, Huang X-Y, Ng FL, Buddhakosai W, Huang P-C, Lan K-C, Huang C-Y, Weng S-L, Cheng Y-N, Liang C, Hsu W-L, Huang H-D (2018) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46:D296–D302

    Article  CAS  PubMed  Google Scholar 

  155. Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, Ma’ayan A (2016) The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database 2016:baw100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Li YF, Altman RB (2018) Systematic target function annotation of human transcription factors. BMC Biol 16:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Han H, Cho J-W, Lee S, Yun A, Kim H, Bae D, Yang S, Kim CY, Lee M, Kim E, Lee S, Kang B, Jeong D, Kim Y, Jeon H-N, Jung H, Nam S, Chung M, Kim J-H, Lee I (2018) TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res 46:D380–D386

    Article  CAS  PubMed  Google Scholar 

  158. van Dam S, Craig T, de Magalhães JP (2015) GeneFriends: a human RNA-seq-based gene and transcript co-expression database. Nucleic Acids Res 43:D1124–D1132

    Article  PubMed  CAS  Google Scholar 

  159. Ishigaki Y, Li X, Serin G, Maquat LE (2001) Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106:607–617

    Article  CAS  PubMed  Google Scholar 

  160. Lejeune F, Ranganathan AC, Maquat LE (2004) eIF4G is required for the pioneer round of translation in mammalian cells. Nat Struct Mol Biol 11:992–1000

    Article  CAS  PubMed  Google Scholar 

  161. Ohnishi T, Yamashita A, Kashima I, Schell T, Anders KR, Grimson A, Hachiya T, Hentze MW, Anderson P, Ohno S (2003) Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol Cell 12:1187–1200

    Article  CAS  PubMed  Google Scholar 

  162. Cowen LE, Tang Y (2017) Identification of nonsense-mediated mRNA decay pathway as a critical regulator of p53 isoform β. Sci Rep 7:17535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Brumbaugh KM, Otterness DM, Geisen C, Oliveira V, Brognard J, Li X, Lejeune F, Tibbetts RS, Maquat LE, Abraham RT (2004) The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Mol Cell 14:585–598

    Article  CAS  PubMed  Google Scholar 

  164. Abraham RT (2004) The ATM-related kinase, hSMG-1, bridges genome and RNA surveillance pathways. DNA Repair (Amst) 3:919–925

    Article  CAS  Google Scholar 

  165. Welch MD, Iwamatsu A, Mitchison TJ (1997) Actin polymerization is induced by Arp 2/3 protein complex at the surface of Listeria monocytogenes. Nature 385:265–269

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Fundação para a Ciência e a Tecnologia (FCT; Portugal) (PTFC/BIM-MEC/3749/2014 to LR and UID/MULTI/04046/2013 Research Unit grant to BioISI), and by National Institute of Health Dr. Ricardo Jorge. RF is recipient of a fellowship from BioSys PhD programme (SFRH/BD/114392/2016) from FCT (Portugal). GN is recipient of a fellowship from BioSys PhD programme (PD/BD/130959/2017) from FCT (Portugal). PJC is recipient of a fellowship from BioSys PhD programme (PD/BD/52495/2014) from FCT (Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luísa Romão .

Editor information

Editors and Affiliations

Annex 1: Table of Network Proteins and Their Attributes

Annex 1: Table of Network Proteins and Their Attributes

Uniprot ID

Gene Symbol

Biological Process

NMD links

NMD-factors

Coexpression

miRNA Coregulation

TF Coregulation

NMD Target

Q9NQ94

A1CF

Cancer

4

UPF3B / RNPS1 / RBM8A / MAGOH

0

2

1

0

Q9NRG9

AAAS

Stress

4

UPF3B / RNPS1 / RBM8A / MAGOH

9

2

10

1

P49748

ACADVL

Stress

1

EIF4A3

2

1

4

1

O95573

ACSL3

Cancer

3

UPF2 / RUVBL1 / RUVBL2

1

1

13

1

P60709

ACTB

Development

7

UPF1 / MAGOH / EIF4A3 / SEC13 / GNL2 / RUVBL1 / RUVBL2

0

5

12

1

P63261

ACTG1

Development

5

UPF1 / SEC13 / GNL2 / RUVBL1 / RUVBL2

3

7

5

1

P61160

ACTR2

Development

3

GNL2 / RUVBL1 / RUVBL2

1

2

19

0

P61158

ACTR3

Development

2

GNL2 / RUVBL1

4

0

15

0

Q9UHB7

AFF4

Cancer

1

MAGOH

2

2

17

0

O00468

AGRN

Development

1

MOV10

3

1

2

1

P05091

ALDH2

Cancer

3

GNL2 / RUVBL1 / RUVBL2

0

2

4

1

O95782

AP2A1

Development

2

UPF1 / RNPS1

4

1

6

1

O94973

AP2A2

Development

2

UPF1 / MOV10

3

3

11

1

Q96BI3

APH1A

Development

1

MOV10

3

0

9

1

P10275

AR

Cancer

2

RUVBL1 / PNRC2

0

1

4

0

Q8N6T3

ARFGAP1

Stress

1

UPF1

6

0

13

1

O14497

ARID1A

Cancer

2

MOV10 / RUVBL1

7

5

5

1

Q8NFD5

ARID1B

Cancer

1

RUVBL1

5

1

4

1

Q68CP9

ARID2

Cancer

1

RUVBL1

2

0

1

0

Q92747

ARPC1A

Development

2

GNL2 / RUVBL1

2

0

12

1

O15143

ARPC1B

Development

3

GNL2 / MOV10 / RUVBL1

2

0

8

1

O15144

ARPC2

Development

3

GNL2 / RUVBL1 / RUVBL2

2

2

6

1

O15145

ARPC3

Development

2

GNL2 / RUVBL1

1

1

10

1

P59998

ARPC4

Development

3

GNL2 / MOV10 / RUVBL1

1

0

10

1

O15511

ARPC5

Development

2

GNL2 / RUVBL1

1

1

6

0

O43681

ASNA1

Stress

2

RUVBL1 / RUVBL2

6

3

8

1

P18848

ATF4

Stress

1

MOV10

5

0

11

1

Q13315

ATM

Cancer

Stress

5

UPF1 / SMG1 / MOV10 / RUVBL1 / RUVBL2

5

1

16

0

P05023

ATP1A1

Cancer

1

RUVBL2

1

5

6

1

Q13535

ATR

Cancer

Stress

4

UPF1 / SMG1 / RUVBL1 / RUVBL2

3

0

19

0

P61769

B2M

Cancer

1

SEC13

1

1

11

0

O95817

BAG3

Stress

2

SEC13 / RUVBL2

0

1

1

1

O95429

BAG4

Stress

1

MOV10

6

1

7

0

P20749

BCL3

Cancer

2

RUVBL1 / RUVBL2

2

1

9

1

Q9NYF8

BCLAF1

Cancer

5

RNPS1 / MAGOH / EIF4A3 / MOV10 / PNRC2

5

3

21

0

P11274

BCR

Cancer

1

SEC13

3

0

8

1

Q13489

BIRC3

Cancer

2

RUVBL1 / RUVBL2

1

0

14

1

P54132

BLM

Cancer

3

UPF2 / MAGOH / EIF4A3

7

1

7

0

Q12982

BNIP2

Development

1

MOV10

5

2

8

1

Q15059

BRD3

Cancer

1

RUVBL2

4

1

2

1

O60885

BRD4

Cancer

1

MAGOH

4

3

1

1

O60566

BUB1B

Cancer

1

SEC13

7

1

12

0

P27797

CALR

Cancer

Stress

1

UPF2

3

1

15

1

Q8WVQ1

CANT1

Cancer

1

MOV10

2

0

11

1

P04632

CAPNS1

Development

1

RUVBL1

1

2

12

1

Q14790

CASP8

Cancer

1

CASC3

3

1

12

1

P04040

CAT

Stress

2

UPF1 / MOV10

0

0

12

0

Q8N163

CCAR2

Stress

1

RUVBL2

10

0

13

0

P04233

CD74

Cancer

1

SEC13

0

0

4

1

Q9NYV4

CDK12

Cancer

1

RNPS1

3

1

12

1

Q00534

CDK6

Cancer

1

CASC3

0

6

9

0

P49715

CEBPA

Cancer

Development

2

RNPS1 / EIF4A3

0

0

14

1

P23528

CFL1

Development

2

RUVBL1 / RUVBL2

4

3

5

1

O14647

CHD2

Cancer

2

RUVBL1 / RUVBL2

4

0

6

1

O96017

CHEK2

Cancer

2

RUVBL1 / RUVBL2

5

1

10

1

Q7Z460

CLASP1

Development

1

SEC13

2

1

12

1

O75122

CLASP2

Development

2

SEC13 / MOV10

0

0

17

0

P30622

CLIP1

Cancer

1

SEC13

0

0

9

1

Q92989

CLP1

Cancer

5

UPF3B / RNPS1 / RBM8A / MAGOH / SEC13

7

0

10

1

P09496

CLTA

Development

1

RBM8A

2

2

10

1

P09497

CLTB

Development

1

SEC13

1

0

8

1

Q00610

CLTC

Cancer

Development

4

SEC13 / GNL2 / RUVBL1 / RUVBL2

3

5

24

0

P53675

CLTCL1

Cancer

Development

4

GNL2 / MOV10 / RUVBL1 / RUVBL2

0

0

1

1

P62633

CNBP

Cancer

4

UPF2 / MAGOH / GNL2 / RUVBL1

8

1

18

1

O75175

CNOT3

Cancer

1

RUVBL2

9

0

6

1

Q9ULM6

CNOT6

Development

2

RUVBL1 / RUVBL2

7

1

11

0

Q92600

CNOT9

Development

1

RUVBL2

1

0

0

0

Q7Z7A1

CNTRL

Cancer

1

UPF1

4

1

0

1

Q01955

COL4A3

Development

1

MOV10

0

0

1

0

O43889

CREB3

Stress

1

MOV10

2

0

19

1

Q8TEY5

CREB3L4

Stress

1

MOV10

1

0

7

0

Q9BZJ0

CRNKL1

Cancer

5

UPF1 / MAGOH / EIF4A3 / GNL2 / RUVBL2

6

0

11

1

P68400

CSNK2A1

Development

5

RNPS1 / SEC13 / MOV10 / RUVBL1 / RUVBL2

9

2

11

0

P19784

CSNK2A2

Development

3

RNPS1 / SEC13 / RUVBL2

8

0

2

1

P67870

CSNK2B

Development

6

UPF1 / RNPS1 / SEC13 / MOV10 / RUVBL1 / RUVBL2

3

0

6

1

P35222

CTNNB1

Cancer

Development

3

MOV10 / RUVBL1 / RUVBL2

1

1

19

0

Q13617

CUL2

Stress

Development

3

SMG6 / RNPS1 / MOV10

6

2

11

1

Q13618

CUL3

Cancer

8

UPF1 / SMG6 / RNPS1 / EIF4A3 / SEC13 / MOV10 / RUVBL1 / RUVBL2

5

2

6

1

Q14999

CUL7

Stress

5

RNPS1 / EIF4A3 / GNL2 / RUVBL1 / RUVBL2

4

0

8

1

P13498

CYBA

Stress

1

UPF2

2

0

3

1

Q8IU60

DCP2

Stress

5

UPF1 / UPF2 / UPF3A / UPF3B / PNRC2

7

1

8

0

Q14203

DCTN1

Cancer

Stress

2

UPF1 / MOV10

1

1

6

1

Q13206

DDX10

Cancer

1

UPF1

4

1

4

1

Q96FC9

DDX11

Stress

2

SMG9 / DHX34

9

1

10

0

O00571

DDX3X

Cancer

4

MAGOH / EIF4A3 / RUVBL1 / RUVBL2

4

3

4

0

P17844

DDX5

Cancer

5

UPF1 / EIF4A3 / SEC13 / RUVBL1 / RUVBL2

4

2

17

1

P26196

DDX6

Cancer

4

UPF1 / GNL2 / RUVBL2 / PNRC2

4

7

19

0

P35659

DEK

Cancer

1

UPF1

10

0

13

0

Q8WYQ5

DGCR8

Cancer

3

UPF1 / GNL2 / MOV10

9

0

17

1

Q9UPY3

DICER1

Cancer

6

UPF1 / EIF4A3 / GNL2 / MOV10 / RUVBL1 / RUVBL2

4

3

12

0

Q9Y2L1

DIS3

Stress

1

RUVBL2

4

1

9

1

P25685

DNAJB1

Cancer

Stress

3

UPF2 / GNL2 / RUVBL2

0

1

13

1

Q99615

DNAJC7

Stress

1

SMG8

10

1

7

1

P50570

DNM2

Cancer

Development

1

RUVBL2

5

2

18

1

Q7L190

DPPA4

Development

2

UPF1 / MAGOH

0

1

1

1

Q02413

DSG1

Development

1

RUVBL1

0

0

0

0

P15924

DSP

Development

2

RUVBL1 / RUVBL2

0

2

2

1

O75530

EED

Cancer

Development

9

UPF1 / RNPS1 / RBM8A / MAGOH / MAGOHB / EIF4A3 /

MOV10 / RUVBL1 / RUVBL2

6

2

25

0

P68104

EEF1A1

Stress

8

UPF1 / MAGOH / EIF4A3 / SEC13 / GNL2 / MOV10 / RUVBL1 / RUVBL2

2

8

20

1

P52798

EFNA4

Development

1

MOV10

2

1

3

1

P47813

EIF1AX

Cancer

2

RBM8A / MAGOH

6

3

0

0

P05198

EIF2S1

Stress

3

UPF1 / EIF4A3 / RUVBL2

7

2

15

0

Q14240

EIF4A2

Cancer

9

UPF3B / SMG1 / RNPS1 / RBM8A / MAGOH / MAGOHB /

EIF4A3 / RUVBL1 / RUVBL2

1

3

14

0

Q04637

EIF4G1

Development

15

UPF1 / UPF2 / UPF3A / UPF3B / SMG1 / SMG5 / SMG6 / SMG7 / SMG8 / SMG9 / RNPS1 / RBM8A / MAGOH / CASC3 / EIF4A3

8

2

10

1

Q99814

EPAS1

Cancer

Stress

Development

1

RUVBL1

0

0

3

1

P21709

EPHA1

Development

3

SMG1 / SMG8 / SMG9

0

0

1

1

P18074

ERCC2

Cancer

1

RUVBL2

7

0

3

1

Q92889

ERCC4

Cancer

1

RUVBL2

3

0

10

0

Q96HE7

ERO1A

Stress

2

EIF4A3 / SEC13

0

0

0

0

P03372

ESR1

Cancer

6

UPF1 / EIF4A3 / GNL2 / RUVBL1 / RUVBL2 / PNRC2

0

2

7

1

P62495

ETF1

Development

15

UPF1 / UPF2 / UPF3A / UPF3B / SMG1 / SMG5 / SMG6 / SMG7 / SMG8 / SMG9 / RNPS1 / RBM8A / MAGOH / CASC3 / EIF4A3

8

2

14

0

P41161

ETV5

Cancer

1

MOV10

1

0

10

1

Q01844

EWSR1

Cancer

5

UPF1 / RBM8A / CASC3 / SEC13 / RUVBL1

11

2

11

1

Q9Y3B2

EXOSC1

Stress

1

UPF2

11

1

11

0

Q13868

EXOSC2

Stress

5

UPF1 / UPF2 / UPF3A / UPF3B / RUVBL2

11

2

11

1

Q9NPD3

EXOSC4

Stress

4

UPF1 / UPF2 / UPF3A / UPF3B

8

0

24

1

Q5RKV6

EXOSC6

Stress

1

UPF2

4

1

8

1

Q96B26

EXOSC8

Stress

2

UPF2 / MOV10

4

0

8

1

Q15910

EZH2

Cancer

Development

4

UPF1 / MAGOH / RUVBL1 / RUVBL2

11

4

12

0

P25445

FAS

Cancer

1

RUVBL2

0

0

6

1

Q969H0

FBXW7

Cancer

2

EIF4A3 / MOV10

4

1

6

1

P39748

FEN1

Cancer

1

MOV10

11

2

16

1

O95684

FGFR1OP

Cancer

1

UPF3A

1

3

17

1

P22607

FGFR3

Cancer

1

SMG7

1

1

0

1

P22455

FGFR4

Cancer

1

CASC3

1

1

5

1

P49789

FHIT

Cancer

1

UPF1

1

1

4

1

Q6UN15

FIP1L1

Cancer

1

RNPS1

3

1

7

1

P21333

FLNA

Cancer

3

SEC13 / RUVBL1 / RUVBL2

0

8

1

1

P58012

FOXL2

Cancer

1

MOV10

0

0

0

0

Q96AE4

FUBP1

Cancer

1

PNRC2

9

2

13

0

P35637

FUS

Cancer

8

UPF1 / UPF2 / UPF3A / UPF3B / RNPS1 / RBM8A / MAGOH / SEC13

10

2

20

0

P35557

GCK

Development

3

SEC13 / RUVBL1 / RUVBL2

0

0

2

1

Q06210

GFPT1

Stress

2

RUVBL1 / RUVBL2

3

1

11

1

Q9Y2X7

GIT1

Development

1

RNPS1

3

1

4

1

Q9HD26

GOPC

Cancer

1

MOV10

4

0

10

0

P51654

GPC3

Cancer

2

UPF2 / RNPS1

0

0

0

0

P78333

GPC5

Cancer

2

UPF2 / RNPS1

0

0

2

0

Q96SL4

GPX7

Stress

1

UPF1

0

1

3

1

Q8TED1

GPX8

Stress

1

UPF1

1

0

3

0

P62993

GRB2

Development

4

CASC3 / EIF4A3 / RUVBL1 / RUVBL2

5

2

12

1

P49840

GSK3A

Stress

1

RUVBL2

5

1

13

1

P49841

GSK3B

Stress

Development

3

UPF3A / DHX34 / RUVBL2

5

4

15

0

P15170

GSPT1

Development

6

UPF1 / UPF2 / UPF3A / SMG1 / RBM8A / RUVBL1

3

1

17

1

Q8IYD1

GSPT2

Development

16

UPF1 / UPF2 / UPF3A / UPF3B / SMG1 / SMG5 / SMG6 / SMG7 / SMG8 / SMG9 / RNPS1 / RBM8A / MAGOH / CASC3 / EIF4A3 / MOV10

0

1

0

1

P0C5Y9

H2AFB1

Development

2

RUVBL1 / RUVBL2

0

0

0

0

Q9BTM1

H2AFJ

Development

4

RBM8A / SEC13 / RUVBL1 / RUVBL2

1

0

8

1

Q71UI9

H2AFV

Development

2

RUVBL1 / RUVBL2

3

2

24

0

P16104

H2AFX

Development

4

UPF1 / SEC13 / RUVBL1 / RUVBL2

7

2

24

1

P0C0S5

H2AFZ

Development

2

RUVBL1 / RUVBL2

10

0

9

0

P84243

H3F3A

Cancer

Development

3

GNL2 / RUVBL1 / RUVBL2

6

0

8

0

P51858

HDGF

Stress

2

MOV10 / RUVBL1

5

6

16

0

Q16665

HIF1A

Cancer

Stress

1

RUVBL2

0

2

10

1

P04908

HIST1H2AB

Development

4

SEC13 / MOV10 / RUVBL1 / RUVBL2

0

1

6

1

Q93077

HIST1H2AC

Development

3

SEC13 / RUVBL1 / RUVBL2

0

1

8

1

P20671

HIST1H2AD

Development

5

MAGOH / EIF4A3 / SEC13 / RUVBL1 / RUVBL2

0

1

5

1

Q99878

HIST1H2AJ

Development

4

RBM8A / SEC13 / RUVBL1 / RUVBL2

0

2

3

1

Q96A08

HIST1H2BA

Development

2

RUVBL1 / RUVBL2

0

0

0

1

P33778

HIST1H2BB

Development

2

RUVBL1 / RUVBL2

0

0

1

1

P62807

HIST1H2BC

Development

5

UPF3B / MAGOH / EIF4A3 / RUVBL1 / RUVBL2

0

2

9

1

P58876

HIST1H2BD

Development

2

RUVBL1 / RUVBL2

0

4

10

1

Q93079

HIST1H2BH

Development

2

RUVBL1 / RUVBL2

0

0

1

1

P06899

HIST1H2BJ

Development

2

RUVBL1 / RUVBL2

0

2

13

1

O60814

HIST1H2BK

Development

2

RUVBL1 / RUVBL2

4

2

12

1

Q99880

HIST1H2BL

Development

2

RUVBL1 / RUVBL2

0

1

4

1

Q99879

HIST1H2BM

Development

2

RUVBL1 / RUVBL2

0

0

3

1

Q99877

HIST1H2BN

Development

2

RUVBL1 / RUVBL2

0

0

5

1

P23527

HIST1H2BO

Development

3

MOV10 / RUVBL1 / RUVBL2

0

0

7

1

P68431

HIST1H3A

Cancer

Development

3

GNL2 / RUVBL1 / RUVBL2

0

0

3

1

P62805

HIST1H4A

Cancer

Development

7

UPF1 / MAGOH / EIF4A3 / SEC13 / MOV10 / RUVBL1 / RUVBL2

3

0

8

0

Q6FI13

HIST2H2AA3

Development

3

SEC13 / RUVBL1 / RUVBL2

0

3

1

0

Q16777

HIST2H2AC

Development

3

SEC13 / RUVBL1 / RUVBL2

0

0

12

1

Q16778

HIST2H2BE

Development

2

RUVBL1 / RUVBL2

0

3

9

1

Q71DI3

HIST2H3A;

Development

3

GNL2 / RUVBL1 / RUVBL2

0

0

0

0

Q8N257

HIST3H2BB

Development

2

RUVBL1 / RUVBL2

1

0

3

1

P17096

HMGA1

Cancer

1

UPF2

3

6

8

1

P52926

HMGA2

Cancer

6

RBM8A / MAGOH / EIF4A3 / SEC13 / RUVBL1 / RUVBL2

1

3

4

0

P41235

HNF4A

Development

8

UPF1 / UPF3B / SMG9 / MAGOH / NBAS / MOV10 / RUVBL2 / PNRC2

0

0

7

1

Q14541

HNF4G

Development

1

PNRC2

0

0

0

1

P22626

HNRNPA2B1

Cancer

4

UPF3B / RNPS1 / RBM8A / MAGOH

6

4

20

1

P09016

HOXD4

Development

1

RNPS1

0

0

0

1

P07900

HSP90AA1

Cancer

Stress

Development

7

SMG1 / SMG5 / SMG6 / SEC13 / GNL2 / RUVBL1 / RUVBL2

7

4

13

1

P08238

HSP90AB1

Cancer

Stress

Development

9

UPF1 / UPF2 / EIF4A3 / DHX34 / SEC13 / GNL2 / MOV10

/ RUVBL1 / RUVBL2

3

5

16

1

P14625

HSP90B1

Stress

2

SMG1 / RUVBL2

1

3

12

1

P0DMV8

HSPA1A

Stress

8

UPF1 / MAGOH / EIF4A3 / SEC13 / GNL2 / MOV10 / RUVBL1 / RUVBL2

0

1

1

1

P0DMV9

HSPA1B

Stress

9

UPF1 / UPF2 / MAGOH / EIF4A3 / SEC13 / GNL2 / MOV10 / RUVBL1 / RUVBL2

0

8

3

1

P34931

HSPA1L

Stress

7

UPF1 / UPF2 / EIF4A3 / SEC13 / GNL2 / RUVBL1 / RUVBL2

1

2

0

1

P54652

HSPA2

Stress

7

UPF1 / UPF2 / EIF4A3 / SEC13 / GNL2 / RUVBL1 / RUVBL2

2

1

7

1

P34932

HSPA4

Stress

7

UPF1 / UPF2 / SMG1 / GNL2 / MOV10 / RUVBL1 / RUVBL2

11

2

14

0

O95757

HSPA4L

Stress

6

UPF1 / UPF2 / MAGOH / GNL2 / RUVBL1 / RUVBL2

2

2

8

0

P11021

HSPA5

Stress

4

GNL2 / MOV10 / RUVBL1 / RUVBL2

0

1

15

1

P17066

HSPA6

Stress

7

UPF1 / UPF2 / EIF4A3 / SEC13 / GNL2 / RUVBL1 / RUVBL2

0

0

2

1

P11142

HSPA8

Stress

Development

9

UPF1 / UPF2 / RNPS1 / MAGOH / EIF4A3 / SEC13 / GNL2 / RUVBL1 / RUVBL2

4

7

16

1

P38646

HSPA9

Stress

7

MAGOH / EIF4A3 / DHX34 / GNL2 / MOV10 / RUVBL1 / RUVBL2

10

2

19

1

Q92598

HSPH1

Stress

5

UPF1 / UPF2 / GNL2 / RUVBL1 / RUVBL2

5

3

11

0

Q9Y4L1

HYOU1

Stress

1

MOV10

2

4

15

1

O75874

IDH1

Cancer

2

UPF1 / MOV10

0

0

10

1

P48735

IDH2

Cancer

1

UPF1

0

1

8

1

Q13422

IKZF1

Cancer

1

MAGOHB

3

1

12

1

P56199

ITGA1

Development

1

MAGOH

0

0

5

0

P23458

JAK1

Cancer

2

MAGOH / EIF4A3

2

1

10

1

P52333

JAK3

Cancer

1

RNPS1

1

0

3

0

Q86VZ6

JAZF1

Cancer

1

RUVBL1

1

0

1

0

P05412

JUN

Cancer

Development

8

UPF1 / UPF2 / UPF3B / RNPS1 / EIF4A3 / MOV10 / RUVBL1 /

RUVBL2

0

3

11

1

Q92794

KAT6A

Cancer

1

RNPS1

5

2

16

0

Q8WYB5

KAT6B

Cancer

2

RUVBL1 / RUVBL2

2

0

10

0

P29375

KDM5A

Cancer

1

RBM8A

7

0

11

1

O95239

KIF4A

Development

1

MOV10

2

2

4

1

P33176

KIF5B

Cancer

1

EIF4A3

2

2

11

0

Q9BQ90

KLHDC3

Stress

1

MOV10

1

2

8

0

Q8NG31

KNL1

Cancer

2

SEC13 / RUVBL1

2

0

0

0

Q9Y448

KNSTRN

Cancer

1

MOV10

8

1

3

0

P04264

KRT1

Development

2

MAGOH / EIF4A3

0

0

0

1

P13645

KRT10

Development

2

MAGOH / EIF4A3

0

1

1

0

P02533

KRT14

Development

2

MAGOH / EIF4A3

0

0

0

1

P08779

KRT16

Development

1

EIF4A3

0

0

1

1

P05783

KRT18

Development

1

UPF2

0

1

4

1

P08727

KRT19

Development

2

MAGOH / EIF4A3

0

1

3

1

P35908

KRT2

Development

2

MAGOH / EIF4A3

0

0

1

1

O76011

KRT34

Development

1

SMG9

1

0

1

1

P13647

KRT5

Development

2

MAGOH / EIF4A3

0

0

2

1

P04259

KRT6B

Development

1

EIF4A3

0

0

0

1

Q3SY84

KRT71

Development

1

EIF4A3

0

0

0

1

O95678

KRT75

Development

2

MAGOHB / EIF4A3

0

0

0

1

P35527

KRT9

Development

2

MAGOH / EIF4A3

0

0

0

1

Q07627

KRTAP1–1

Development

1

MAGOHB

1

0

0

0

Q52LG2

KRTAP13–2

Development

1

MAGOHB

0

0

0

0

Q3LI66

KRTAP6–2

Development

1

CASC3

0

0

0

0

Q9UJU2

LEF1

Cancer

1

RUVBL1

1

1

0

1

P53671

LIMK2

Development

1

RUVBL2

2

0

8

1

Q9H9Z2

LIN28A

Development

2

UPF1 / MOV10

0

2

0

1

P02545

LMNA

Cancer

Stress

4

SMG1 / GNL2 / MOV10 / RUVBL1

0

1

13

1

Q8N653

LZTR1

Cancer

2

EIF4A3 / RUVBL1

5

0

19

1

P36507

MAP2K2

Cancer

Development

2

RUVBL1 / RUVBL2

5

1

7

1

P28482

MAPK1

Cancer

Stress

Development

3

UPF1 / RUVBL1 / RUVBL2

6

2

20

1

P27361

MAPK3

Stress

Development

3

UPF1 / RUVBL1 / RUVBL2

2

0

2

1

P49137

MAPKAPK2

Stress

1

MOV10

1

3

1

1

Q14703

MBTPS1

Stress

1

MOV10

5

1

13

1

Q93074

MED12

Cancer

Development

1

CASC3

7

1

0

0

Q9UHV7

MED13

Development

1

PNRC2

8

2

1

0

Q71F56

MED13L

Development

1

PNRC2

2

2

3

1

A0JLT2

MED19

Development

2

RNPS1 / RUVBL1

5

1

8

1

Q9H204

MED28

Development

1

MOV10

9

2

2

0

Q9NX70

MED29

Development

1

MOV10

5

1

11

1

Q9Y3C7

MED31

Development

1

MOV10

6

1

4

0

Q9NPJ6

MED4

Development

2

RNPS1 / SEC13

6

0

8

0

Q96G25

MED8

Development

1

MOV10

5

2

8

1

Q14814

MEF2D

Development

1

MOV10

2

4

14

1

P40692

MLH1

Cancer

2

RUVBL1 / RUVBL2

3

0

18

1

Q9BVC4

MLST8

Stress

4

SEC13 / GNL2 / MOV10 / RUVBL2

8

0

14

1

P43246

MSH2

Cancer

2

RUVBL1 / RUVBL2

10

1

15

0

P52701

MSH6

Cancer

1

RUVBL2

10

4

12

0

P42345

MTOR

Cancer

Stress

7

UPF1 / UPF3B / SMG1 / EIF4A3 / MOV10 / RUVBL1 / RUVBL2

10

1

6

1

P10242

MYB

Cancer

1

UPF2

1

2

7

1

P12524

MYCL

Cancer

2

RUVBL1 / RUVBL2

0

0

1

0

Q969H8

MYDGF

Stress

1

MOV10

3

0

0

0

P35580

MYH10

Development

3

MAGOH / EIF4A3 / RUVBL2

1

0

3

1

Q7Z406

MYH14

Development

1

RUVBL2

0

3

1

1

P35579

MYH9

Cancer

Development

3

MAGOH / EIF4A3 / RUVBL2

1

7

16

1

Q9H9S0

NANOG

Development

4

SEC13 / MOV10 / RUVBL1 / RUVBL2

3

0

1

1

O60934

NBN

Cancer

1

CASC3

4

0

17

0

Q09161

NCBP1

Development

16

UPF1 / UPF2 / UPF3A / UPF3B / SMG1 / SMG5 / SMG6 / SMG7 / SMG8 / SMG9 / RNPS1 / RBM8A / MAGOH / CASC3 / EIF4A3 / RUVBL1

1

1

15

0

P52298

NCBP2

Development

15

UPF1 / UPF2 / UPF3A / UPF3B / SMG1 / SMG5 / SMG6 / SMG7 / SMG8 / SMG9 / RNPS1 / RBM8A / MAGOH / CASC3 / EIF4A3

9

1

24

0

Q92597

NDRG1

Cancer

2

UPF1 / RUVBL2

0

1

19

1

Q00653

NFKB2

Cancer

3

MOV10 / RUVBL1 / RUVBL2

3

1

13

1

O00221

NFKBIE

Cancer

1

RUVBL2

0

1

5

1

P23511

NFYA

Stress

1

MOV10

3

0

16

0

Q8N4C6

NIN

Cancer

1

UPF1

3

2

6

0

Q15155

NOMO1

Development

1

UPF2

2

0

1

1

Q5JPE7

NOMO2

Development

1

MOV10

1

0

1

1

Q15233

NONO

Cancer

1

RNPS1

11

4

9

0

P06748

NPM1

Cancer

6

UPF1 / EIF4A3 / GNL2 / MOV10 / RUVBL1 / RUVBL2

8

3

19

0

Q13285

NR5A1

Development

2

EIF4A3 / PNRC2

1

0

2

0

O00482

NR5A2

Development

1

PNRC2

0

0

1

1

O96028

NSD2

Cancer

1

RUVBL2

7

0

0

0

P78549

NTHL1

Cancer

2

MOV10 / RUVBL2

10

3

18

1

O95631

NTN1

Development

6

UPF1 / SMG5 / EIF4A3 / DHX34 / GNL2 / RUVBL2

0

0

0

0

O00634

NTN3

Development

6

UPF1 / SMG5 / EIF4A3 / DHX34 / GNL2 / RUVBL2

0

0

1

0

Q9HB63

NTN4

Development

1

MOV10

0

0

1

1

P04629

NTRK1

Cancer

9

UPF1 / UPF2 / SMG8 / EIF4A3 / GNL2 / NBAS / MOV10 / RUVBL1 / RUVBL2

0

0

4

1

Q14980

NUMA1

Cancer

2

MOV10 / RUVBL1

5

0

13

1

P57740

NUP107

Stress

5

UPF3B / RNPS1 / RBM8A / MAGOH / SEC13

8

1

16

0

Q8WUM0

NUP133

Stress

5

UPF3B / RNPS1 / RBM8A / MAGOH / SEC13

2

0

13

0

P49790

NUP153

Stress

4

UPF3B / RNPS1 / RBM8A / MAGOH

8

3

19

0

O75694

NUP155

Stress

4

UPF3B / RNPS1 / RBM8A / MAGOH

5

4

12

0

Q12769

NUP160

Stress

5

UPF3B / RNPS1 / RBM8A / MAGOH / SEC13

10

1

4

0

Q5SRE5

NUP188

Stress

4

UPF3B / RNPS1 / RBM8A / MAGOH

10

1

8

1

Q92621

NUP205

Stress

5

UPF3B / RNPS1 / RBM8A / MAGOH / MOV10

10

2

24

0

Q8TEM1

NUP210

Stress

4

UPF3B / RNPS1 / RBM8A / MAGOH

8

1

8

1

P35658

NUP214

Cancer

Stress

4

UPF3B / RNPS1 / RBM8A / MAGOH

5

3

18

1

Q8NFH5

NUP35

Stress

4

UPF3B / RNPS1 / RBM8A / MAGOH

2

2

10

0

Q8NFH4

NUP37

Stress

5

UPF3B / RNPS1 / RBM8A / MAGOH / SEC13

2

1

4

0

Q8NFH3

NUP43

Stress

5

UPF3B / RNPS1 / RBM8A / MAGOH / SEC13

2

2

5

0

Q9UKX7

NUP50

Stress

4

UPF3B / RNPS1 / RBM8A / MAGOH

6

3

13

1

Q7Z3B4

NUP54

Stress

4

UPF3B / RNPS1 / RBM8A / MAGOH

10

1

9

0

Q9BVL2

NUP58

Stress

4

UPF3B / RNPS1 / RBM8A / MAGOH

8

0

0

0

P37198

NUP62

Stress

5

UPF3B / RNPS1 / RBM8A / MAGOH / EIF4A3

2

1

19

1

Q9BW27

NUP85

Stress

5

UPF3B / RNPS1 / RBM8A / MAGOH / SEC13

12

0

12

1

Q99567

NUP88

Stress

4

UPF3B / RNPS1 / RBM8A / MAGOH

8

0

13

1

Q8N1F7

NUP93

Stress

5

UPF3B / RNPS1 / RBM8A / MAGOH / GNL2

9

0

6

1

P52948

NUP98

Cancer

Stress

5

UPF3B / RNPS1 / RBM8A / MAGOH / SEC13

3

2

20

1

O15504

NUPL2

Stress

4

UPF3B / RNPS1 / RBM8A / MAGOH

8

0

11

0

P07237

P4HB

Stress

2

RBM8A / RUVBL2

1

3

1

1

P11940

PABPC1

Cancer

Development

18

UPF1 / UPF2 / UPF3A / UPF3B / SMG1 / SMG5 / SMG6 / SMG7 / SMG8 / SMG9 / RNPS1 / RBM8A / MAGOH / CASC3 / EIF4A3 / MOV10 / RUVBL1 / RUVBL2

4

2

12

1

O75914

PAK3

Development

1

SMG6

0

0

0

1

Q86YC2

PALB2

Cancer

1

MOV10

4

0

16

0

O95453

PARN

Stress

4

UPF1 / UPF2 / UPF3A / UPF3B

2

0

5

1

P23759

PAX7

Cancer

1

MAGOHB

0

0

1

0

Q86U86

PBRM1

Cancer

1

RUVBL1

6

2

8

0

Q15365

PCBP1

Cancer

6

UPF3B / RNPS1 / RBM8A / MAGOH / RUVBL1 / RUVBL2

5

0

7

0

P35227

PCGF2

Development

1

MOV10

0

0

1

1

Q15154

PCM1

Cancer

2

SMG5 / SMG7

4

0

17

1

P01127

PDGFB

Cancer

1

GNL2

0

2

0

1

P16234

PDGFRA

Cancer

1

RNPS1

0

3

1

1

Q8IWS0

PHF6

Cancer

1

MAGOH

7

1

1

0

Q13492

PICALM

Cancer

1

SEC13

2

0

17

0

O60331

PIP5K1C

Development

1

MOV10

1

3

3

1

P30613

PKLR

Development

2

EIF4A3 / GNL2

1

0

3

1

P55347

PKNOX1

Development

1

MOV10

0

1

12

1

Q9Y446

PKP3

Development

1

RBM8A

0

0

0

1

Q99569

PKP4

Development

1

MOV10

4

0

6

1

P29590

PML

Cancer

1

RBM8A

2

0

4

1

P54277

PMS1

Cancer

1

MOV10

7

1

10

0

P54278

PMS2

Cancer

2

RUVBL1 / RUVBL2

7

0

8

0

P28340

POLD1

Cancer

2

UPF1 / UPF2

9

1

9

1

Q07864

POLE

Cancer

1

UPF1

8

4

16

1

P24928

POLR2A

Development

8

UPF1 / UPF3B / RNPS1 / RBM8A / MAGOH / MOV10 / RUVBL1 / RUVBL2

7

5

22

1

P30876

POLR2B

Development

7

UPF3B / RNPS1 / RBM8A / MAGOH / GNL2 / RUVBL1 / RUVBL2

9

1

2

1

P19387

POLR2C

Development

5

UPF3B / RNPS1 / RBM8A / MAGOH / RUVBL2

6

2

5

1

O15514

POLR2D

Development

4

UPF3B / RNPS1 / RBM8A / MAGOH

8

1

11

1

P19388

POLR2E

Development

8

UPF3B / SMG1 / RNPS1 / RBM8A / MAGOH / SEC13 / RUVBL1 / RUVBL2

7

1

13

1

P61218

POLR2F

Development

4

UPF3B / RNPS1 / RBM8A / MAGOH

7

1

4

1

P62487

POLR2G

Development

4

UPF3B / RNPS1 / RBM8A / MAGOH

9

1

8

1

P52434

POLR2H

Development

5

UPF3B / RNPS1 / RBM8A / MAGOH / RUVBL2

7

2

10

1

P36954

POLR2I

Development

4

UPF3B / RNPS1 / RBM8A / MAGOH

6

1

8

1

P52435

POLR2J

Development

5

UPF3B / RNPS1 / RBM8A / MAGOH / RUVBL1

2

0

1

1

P53803

POLR2K

Development

5

UPF3B / RNPS1 / RBM8A / MAGOH / MOV10

8

0

8

0

P62875

POLR2L

Development

5

UPF3B / RNPS1 / RBM8A / MAGOH / RUVBL2

2

3

12

1

Q96HA1

POM121

Stress

4

UPF3B / RNPS1 / RBM8A / MAGOH

7

4

4

1

Q86W92

PPFIBP1

Cancer

1

MOV10

0

0

6

0

P30153

PPP2R1A

Cancer

17

UPF1 / UPF2 / UPF3A / UPF3B / SMG1 / SMG5 / SMG6 / SMG7 / SMG8 / SMG9 / RNPS1 / RBM8A / MAGOH / CASC3 / EIF4A3 / GNL2 / RUVBL1

6

3

10

1

Q15173

PPP2R5B

Stress

1

RUVBL1

0

0

6

1

P16298

PPP3CB

Development

1

RUVBL2

0

0

7

1

Q06830

PRDX1

Stress

2

MAGOH / EIF4A3

6

1

16

1

P32119

PRDX2

Stress

2

RUVBL1 / RUVBL2

2

1

8

1

Q6NWY9

PRPF40B

Cancer

1

RUVBL2

4

1

7

1

O75475

PSIP1

Cancer

2

EIF4A3 / PNRC2

6

1

13

0

P25788

PSMA3

Stress

Development

2

RUVBL1 / RUVBL2

8

0

12

1

P20618

PSMB1

Stress

Development

2

RBM8A / SEC13

8

1

7

1

P49721

PSMB2

Stress

Development

2

GNL2 / RUVBL2

11

0

6

1

P49720

PSMB3

Stress

Development

2

GNL2 / RUVBL2

0

0

17

1

P62191

PSMC1

Stress

Development

2

RUVBL1 / RUVBL2

2

2

2

1

P35998

PSMC2

Stress

Development

2

RUVBL1 / RUVBL2

5

2

1

1

P17980

PSMC3

Stress

Development

3

MOV10 / RUVBL1 / RUVBL2

2

1

12

1

P43686

PSMC4

Stress

Development

3

MOV10 / RUVBL1 / RUVBL2

10

4

17

1

P62195

PSMC5

Stress

Development

3

GNL2 / RUVBL1 / RUVBL2

9

2

17

1

P62333

PSMC6

Stress

Development

2

RUVBL1 / RUVBL2

6

1

9

0

Q99460

PSMD1

Stress

Development

4

GNL2 / MOV10 / RUVBL1 / RUVBL2

9

1

6

1

O75832

PSMD10

Stress

Development

2

RUVBL1 / RUVBL2

8

1

3

0

O00231

PSMD11

Stress

Development

2

RUVBL1 / RUVBL2

8

6

13

0

O00232

PSMD12

Stress

Development

3

UPF1 / RUVBL1 / RUVBL2

1

1

11

1

Q9UNM6

PSMD13

Stress

Development

2

RUVBL1 / RUVBL2

8

1

3

1

O00487

PSMD14

Stress

Development

5

UPF1 / SEC13 / GNL2 / RUVBL1 / RUVBL2

10

0

9

0

Q13200

PSMD2

Stress

Development

4

GNL2 / MOV10 / RUVBL1 / RUVBL2

6

3

15

1

O43242

PSMD3

Stress

Development

3

MOV10 / RUVBL1 / RUVBL2

5

1

21

1

Q15008

PSMD6

Stress

Development

2

RUVBL1 / RUVBL2

3

1

9

1

P51665

PSMD7

Stress

Development

2

RUVBL1 / RUVBL2

10

2

12

1

P48556

PSMD8

Stress

Development

2

GNL2 / RUVBL2

5

2

11

1

P61289

PSME3

Stress

Development

2

RNPS1 / MOV10

8

5

10

1

Q15185

PTGES3

Stress

2

SMG5 / SMG6

9

1

22

0

P78406

RAE1

Stress

5

UPF3B / RNPS1 / RBM8A / MAGOH / SEC13

9

1

12

1

P49792

RANBP2

Cancer

Stress

5

UPF3B / RNPS1 / RBM8A / MAGOH / SEC13

2

1

15

0

Q96S59

RANBP9

Development

1

RNPS1

2

0

7

0

P52306

RAP1GDS1

Cancer

1

MOV10

3

0

4

0

P10276

RARA

Cancer

Development

2

RUVBL1 / PNRC2

2

2

5

1

P13631

RARG

Development

1

PNRC2

1

0

0

1

Q09028

RBBP4

Development

2

RUVBL1 / RUVBL2

10

1

19

0

Q16576

RBBP7

Development

2

RUVBL1 / RUVBL2

3

2

3

1

P98175

RBM10

Cancer

5

MAGOH / EIF4A3 / MOV10 / RUVBL1 / RUVBL2

8

3

3

1

Q96T37

RBM15

Cancer

1

UPF1

8

0

16

1

Q04864

REL

Cancer

3

SMG9 / MAGOHB / EIF4A3

3

2

7

1

Q04206

RELA

Development

2

RUVBL1 / RUVBL2

3

1

14

0

Q6PCD5

RFWD3

Cancer

1

MOV10

12

2

7

0

A6NKT7

RGPD3

Cancer

1

SEC13

2

0

0

0

P62745

RHOB

Development

1

SEC13

0

1

9

0

P08134

RHOC

Development

1

SEC13

1

1

4

1

P27694

RPA1

Stress

3

MOV10 / RUVBL1 / RUVBL2

5

1

8

0

P15927

RPA2

Stress

2

MOV10 / RUVBL2

4

2

16

0

P35244

RPA3

Stress

2

MOV10 / RUVBL2

9

2

6

0

P04843

RPN1

Cancer

2

SEC13 / RUVBL1

7

1

4

1

Q9UK32

RPS6KA6

Development

1

DHX34

0

1

1

1

Q8N122

RPTOR

Stress

3

MOV10 / RUVBL1 / RUVBL2

9

0

9

1

P19793

RXRA

Development

1

PNRC2

2

0

0

1

Q9NSC2

SALL1

Development

1

RUVBL2

0

2

1

1

Q9UJQ4

SALL4

Cancer

Development

1

RUVBL2

3

0

3

0

P21912

SDHB

Cancer

1

RUVBL2

5

1

2

1

Q99643

SDHC

Cancer

1

UPF1

2

2

5

0

O94979

SEC31A

Stress

2

SEC13 / MOV10

5

2

14

1

P61619

SEC61A1

Stress

2

UPF3B / MOV10

4

3

13

1

Q96EE3

SEH1L

Stress

5

UPF3B / RNPS1 / RBM8A / MAGOH / SEC13

12

1

18

1

Q99719

SEPT5

Cancer

1

RUVBL2

0

0

12

0

Q14141

SEPT6

Cancer

1

DHX34

1

0

2

0

O75533

SF3B1

Cancer

8

UPF1 / UPF3B / RNPS1 / RBM8A / MAGOH / EIF4A3 / MOV10 / RUVBL2

8

2

12

0

P23246

SFPQ

Cancer

2

RNPS1 / MOV10

9

4

10

1

Q96B97

SH3KBP1

Development

1

MOV10

0

0

1

1

P29353

SHC1

Stress

Development

3

MOV10 / RUVBL1 / RUVBL2

2

0

13

0

Q12824

SMARCB1

Cancer

2

EIF4A3 / RUVBL1

10

1

7

1

Q96GM5

SMARCD1

Cancer

2

UPF2 / RUVBL1

8

1

5

1

Q6STE5

SMARCD3

Development

2

UPF2 / RUVBL1

0

0

2

1

Q969G3

SMARCE1

Cancer

1

MOV10

6

1

10

0

Q14683

SMC1A

Cancer

5

UPF3B / RNPS1 / RBM8A / MAGOH / RUVBL2

10

3

11

0

Q8TEQ0

SNX29

Cancer

1

MAGOH

1

0

5

1

P04179

SOD2

Stress

2

GNL2 / RUVBL2

0

3

14

0

P48431

SOX2

Cancer

Development

3

SMG6 / RUVBL1 / RUVBL2

2

0

2

0

O60271

SPAG9

Development

1

PNRC2

5

3

9

1

Q13813

SPTAN1

Development

2

MAGOH / EIF4A3

1

1

5

1

Q01082

SPTBN1

Development

3

RBM8A / MAGOH / EIF4A3

0

4

9

0

P36956

SREBF1

Development

2

SEC13 / RUVBL2

2

1

1

1

Q12772

SREBF2

Development

1

SEC13

5

3

19

1

Q01130

SRSF2

Cancer

6

UPF3B / RNPS1 / RBM8A / MAGOH / EIF4A3 / RUVBL1

11

2

16

0

P84103

SRSF3

Cancer

5

UPF3B / RNPS1 / RBM8A / MAGOH / EIF4A3

12

1

19

1

P43307

SSR1

Stress

1

RUVBL2

3

3

11

0

P40763

STAT3

Cancer

Development

2

RBM8A / MOV10

2

3

16

1

Q15468

STIL

Cancer

3

UPF1 / SMG7 / SMG9

9

1

9

0

Q16623

STX1A

Development

1

SEC13

0

1

0

1

P61266

STX1B

Development

1

SEC13

0

0

0

1

Q15022

SUZ12

Cancer

Development

6

UPF1 / RNPS1 / RBM8A / MAGOH / EIF4A3 / RUVBL2

9

0

7

0

Q93075

TATDN2

Stress

1

MOV10

5

2

11

1

Q9BZK7

TBL1XR1

Cancer

Development

1

RUVBL2

5

2

8

0

Q99081

TCF12

Cancer

Development

2

RBM8A / MOV10

1

1

19

0

P15923

TCF3

Cancer

Development

2

RUVBL1 / RUVBL2

6

2

6

0

P15884

TCF4

Development

1

MAGOHB

0

1

8

1

Q9NQB0

TCF7L2

Cancer

2

MAGOHB / RUVBL1

4

2

4

1

O14746

TERT

Cancer

5

UPF1 / SMG5 / SMG6 / RUVBL1 / RUVBL2

0

1

7

1

Q92734

TFG

Cancer

1

SEC13

3

3

9

1

P0C1Z6

TFPT

Cancer

2

RUVBL1 / RUVBL2

4

1

15

1

Q96RS0

TGS1

Development

1

MAGOH

7

0

19

0

Q9Y2W1

THRAP3

Cancer

Development

6

UPF3B / RNPS1 / RBM8A / MAGOH / CASC3 / EIF4A3

8

4

21

1

Q92956

TNFRSF14

Cancer

1

RUVBL2

2

0

7

1

P04637

TP53

Cancer

4

SMG1 / SMG5 / SMG7 / MOV10

4

2

20

1

Q9H3D4

TP63

Cancer

1

UPF2

0

1

3

0

P06753

TPM3

Cancer

1

MOV10

3

4

12

1

P12270

TPR

Cancer

Stress

8

UPF1 / UPF3B / RNPS1 / RBM8A / MAGOH / SEC13 / GNL2 / RUVBL2

8

1

19

1

P14373

TRIM27

Cancer

3

SMG9 / MAGOHB / EIF4A3

13

0

1

1

Q9UPN9

TRIM33

Cancer

1

RUVBL1

3

0

15

0

Q9Y4A5

TRRAP

Cancer

3

SMG1 / RUVBL1 / RUVBL2

11

1

10

0

Q92574

TSC1

Cancer

1

MOV10

2

2

7

1

Q71U36

TUBA1A

Development

5

SMG1 / SEC13 / GNL2 / RUVBL1 / RUVBL2

0

3

2

1

P68363

TUBA1B

Development

5

MAGOH / SEC13 / GNL2 / RUVBL1 / RUVBL2

2

6

9

1

Q13748

TUBA3C

Development

4

SEC13 / GNL2 / RUVBL1 / RUVBL2

1

0

0

1

Q6PEY2

TUBA3E

Development

4

SEC13 / GNL2 / RUVBL1 / RUVBL2

0

0

0

1

P68366

TUBA4A

Development

6

RNPS1 / SEC13 / GNL2 / MOV10 / RUVBL1 / RUVBL2

0

0

2

1

Q9NY65

TUBA8

Development

4

SEC13 / GNL2 / RUVBL1 / RUVBL2

1

0

1

1

A6NHL2

TUBAL3

Development

3

GNL2 / RUVBL1 / RUVBL2

1

0

0

1

Q9H4B7

TUBB1

Development

4

EIF4A3 / GNL2 / RUVBL1 / RUVBL2

3

0

1

1

Q13885

TUBB2A

Development

5

UPF2 / EIF4A3 / GNL2 / RUVBL1 / RUVBL2

0

3

2

1

Q9BVA1

TUBB2B

Development

4

EIF4A3 / GNL2 / RUVBL1 / RUVBL2

1

3

1

1

Q13509

TUBB3

Development

4

EIF4A3 / GNL2 / RUVBL1 / RUVBL2

0

3

0

1

P04350

TUBB4A

Development

4

EIF4A3 / GNL2 / RUVBL1 / RUVBL2

0

0

0

1

P68371

TUBB4B

Development

4

EIF4A3 / GNL2 / RUVBL1 / RUVBL2

8

3

5

1

Q9BUF5

TUBB6

Development

5

EIF4A3 / GNL2 / MOV10 / RUVBL1 / RUVBL2

1

0

6

1

Q3ZCM7

TUBB8

Development

4

EIF4A3 / GNL2 / RUVBL1 / RUVBL2

0

0

0

1

Q99757

TXN2

Stress

1

MOV10

4

2

7

1

Q01081

U2AF1

Cancer

4

UPF3B / RNPS1 / RBM8A / MAGOH

9

0

14

1

P62987

UBA52

Stress

Development

18

UPF1 / UPF2 / UPF3A / UPF3B / SMG1 / SMG5 / SMG6 / SMG7 / SMG8 / SMG9 / RNPS1 / RBM8A / MAGOH / CASC3 / EIF4A3 / MOV10 / RUVBL1 / RUVBL2

2

2

20

1

P0CG48

UBC

Stress

Development

23

UPF1 / UPF2 / UPF3B / SMG1 / SMG5 / SMG6 / SMG7 / SMG8 / SMG9 / RNPS1 / RBM8A / MAGOH / MAGOHB / CASC3 / EIF4A3 / DHX34 / SEC13 / GNL2 / NBAS / MOV10 / RUVBL1 / RUVBL2 / PNRC2

0

3

13

1

P35125

USP6

Cancer

1

RUVBL1

2

1

0

0

P50552

VASP

Development

1

MOV10

2

1

8

1

P55072

VCP

Stress

4

SEC13 / GNL2 / RUVBL1 / RUVBL2

6

2

13

1

Q96AJ9

VTI1A

Cancer

1

SEC13

8

1

9

1

O00401

WASL

Development

1

RUVBL2

0

4

23

0

Q9H6R7

WDCP

Cancer

2

RUVBL1 / RUVBL2

8

0

0

0

P61964

WDR5

Development

2

RUVBL1 / RUVBL2

14

2

5

1

O14980

XPO1

Cancer

12

UPF1 / UPF2 / UPF3A / UPF3B / SMG7 / RNPS1 / CASC3 / EIF4A3 / SEC13 / GNL2 / RUVBL1 / RUVBL2

14

3

12

0

P62258

YWHAE

Cancer Stress

5

UPF1 / SEC13 / GNL2 / RUVBL1 / RUVBL2

6

3

10

1

P25490

YY1

Development

2

RUVBL1 / RUVBL2

7

5

7

0

Q05516

ZBTB16

Cancer

1

PNRC2

0

1

10

0

Q14202

ZMYM3

Cancer

1

MOV10

8

0

3

1

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernandes, R., Nogueira, G., da Costa, P.J., Pinto, F., Romão, L. (2019). Nonsense-Mediated mRNA Decay in Development, Stress and Cancer. In: Romão, L. (eds) The mRNA Metabolism in Human Disease. Advances in Experimental Medicine and Biology, vol 1157. Springer, Cham. https://doi.org/10.1007/978-3-030-19966-1_3

Download citation

Publish with us

Policies and ethics