Skip to main content

Silk Fibroin-Decorin Engineered Biologics to Repair Musculofascial Defects

  • Chapter
  • First Online:
Regenerative Medicine and Plastic Surgery

Abstract

The use of synthetic mesh (e.g., polypropylene [PP] mesh) and biologic (e.g., porcine acellular dermal matrix (PADM)) for the repair of abdominal wall musculofascial has limitations associated with an increased risk of complications and finite properties, respectively. Silk fibroin (SF)-based scaffolds are fabricated with decorin blends (SFD) to create a matrix platform with the desired structure-property function to be translated to the clinic to address patient-specific needs. PADM and SFD composites with SFD or PADM facing the peritoneal cavity were tested in an in vivo incisional ventral hernia repair model using female Hartley guinea pigs. At week 4, gross observation of adhesion grade and strength showed that the SFD, PADM, and composites resulted in fewer and weaker adhesions than did PP mesh (p < 0.05). Mechanical properties at the musculofascial-implant interface in the SFD group were similar to those of the native abdominal wall. SFD group exhibited homogeneous three-dimensional cell infiltration, vascularization, and tissue remodeling in implants. In conclusion, SFD promotes musculofascial regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butler CE, Campbell KT. Minimally invasive component separation with inlay bioprosthetic mesh (MICSIB) for complex abdominal wall reconstruction. Plast Reconstr Surg. 2011;128:698–709.

    Article  CAS  PubMed  Google Scholar 

  2. Altman AM, Abdul Khalek FJ, Alt EU, Butler CE. Adipose tissue-derived stem cells enhance bioprosthetic mesh repair of ventral hernias. Plast Reconstr Surg. 2010;126:845–54.

    Article  CAS  PubMed  Google Scholar 

  3. Burns NK, Jaffari MV, Rios CN, Mathur AB, Butler CE. Non-cross-linked porcine acellular dermal matrices for abdominal wall reconstruction. Plast Reconstr Surg. 2010;125:167–76.

    Article  CAS  PubMed  Google Scholar 

  4. Butler CE, Burns NK, Campbell KT, Mathur AB, Jaffari MV, Rios CN. Comparison of cross-linked and non-cross-linked porcine acellular dermal matrices for ventral hernia repair. J Am Coll Surg. 2010;211:368–76.

    Article  PubMed  Google Scholar 

  5. Butler CE, Navarro FA, Orgill DP. Reduction of abdominal adhesions using composite collagen-GAG implants for ventral hernia repair. J Biomed Mater Res. 2001;58:75–80.

    Article  CAS  PubMed  Google Scholar 

  6. Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface. 2007;4:999–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gobin AS, Butler CE, Mathur AB. Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin-chitosan blend. Tissue Eng. 2006;12:3383–94.

    Article  CAS  PubMed  Google Scholar 

  8. Gupta V, Mun GH, Choi B, Aseh A, Mildred L, Patel A, Zhang Q, Price JE, Chang D, Robb G, Mathur AB. Repair and reconstruction of a resected tumor defect using a composite of tissue flap-nanotherapeutic-silk fibroin and chitosan scaffold. Ann Biomed Eng. 2011;39:2374–87.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rios CN, Skoracki RJ, Mathur AB. GNAS1 and PHD2 short-interfering RNA support bone regeneration in vitro and an in vivo sheep model. Clin Orthop Relat Res. 2012;470:2541–53.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rios CN, Skoracki RJ, Miller MJ, Satterfield WC, Mathur AB. In vivo bone formation in silk fibroin and chitosan blend scaffolds via ectopically grafted periosteum as a cell source: a pilot study. Tissue Eng Part A. 2009;15:2717–25.

    Article  CAS  PubMed  Google Scholar 

  11. Zang M, Zhang Q, Davis G, Huang G, Jaffari M, Rios CN, Gupta V, Yu P, Mathur AB. Perichondrium directed cartilage formation in silk fibroin and chitosan blend scaffolds for tracheal transplantation. Acta Biomater. 2011;7(9):3422–31.

    Article  CAS  PubMed  Google Scholar 

  12. Gobin AS, Froude VE, Mathur AB. Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration. J Biomed Mater Res A. 2005;74:465–73.

    Article  PubMed  CAS  Google Scholar 

  13. Karageorgiou V, Tomkins M, Fajardo R, Meinel L, Snyder B, Wade K, Chen J, Vunjak-Novakovic G, Kaplan DL. Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo. J Biomed Mater Res A. 2006;78:324–34.

    Article  PubMed  CAS  Google Scholar 

  14. Lovett M, Cannizzaro C, Daheron L, Messmer B, Vunjak-Novakovic G, Kaplan DL. Silk fibroin microtubes for blood vessel engineering. Biomaterials. 2007;28:5271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mauney JR, Nguyen T, Gillen K, Kirker-Head C, Gimble JM, Kaplan DL. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials. 2007;28:5280–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. She Z, Liu W, Feng Q. Self-assembly model, hepatocytes attachment and inflammatory response for silk fibroin/chitosan scaffolds. Biomed Mater. 2009;4:045014.

    Article  PubMed  CAS  Google Scholar 

  17. Silva SS, Motta A, Rodrigues MT, Pinheiro AF, Gomes ME, Mano JF, Reis RL, Migliaresi C. Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules. 2008;9:2764–74.

    Article  CAS  PubMed  Google Scholar 

  18. Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem. 1998;67:609–52.

    Article  CAS  PubMed  Google Scholar 

  19. Reed CC, Iozzo RV. The role of decorin in collagen fibrillogenesis and skin homeostasis. Glycoconj J. 2002;19:249–55.

    Article  CAS  PubMed  Google Scholar 

  20. Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol. 1997;136:729–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferdous Z, Grande-Allen KJ. Utility and control of proteoglycans in tissue engineering. Tissue Eng. 2007;13:1893–904.

    Article  CAS  PubMed  Google Scholar 

  22. Iwasaki S, Hosaka Y, Iwasaki T, Yamamoto K, Nagayasu A, Ueda H, Kokai Y, Takehana K. The modulation of collagen fibril assembly and its structure by decorin: an electron microscopic study. Arch Histol Cytol. 2008;71:37–44.

    Article  CAS  PubMed  Google Scholar 

  23. Weis SM, Zimmerman SD, Shah M, Covell JW, Omens JH, Ross J Jr, Dalton N, Jones Y, Reed CC, Iozzo RV, McCulloch AD. A role for decorin in the remodeling of myocardial infarction. Matrix Biol. 2005;24:313–24.

    Article  CAS  PubMed  Google Scholar 

  24. Vesentini S, Redaelli A, Montevecchi FM. Estimation of the binding force of the collagen molecule-decorin core protein complex in collagen fibril. J Biomech. 2005;38:433–43.

    Article  PubMed  Google Scholar 

  25. Asakura T, Ashida J, Yamane T, Kameda T, Nakazawa Y, Ohgo K, Komatsu K. A repeated beta-turn structure in poly(ala-Gly) as a model for silk I of Bombyx mori silk fibroin studied with two-dimensional spin-diffusion NMR under off magic angle spinning and rotational echo double resonance. J Mol Biol. 2001;306:291–305.

    Article  CAS  PubMed  Google Scholar 

  26. Butler CE, Prieto VG. Reduction of adhesions with composite AlloDerm/polypropylene mesh implants for abdominal wall reconstruction. Plast Reconstr Surg. 2004;114:464–73.

    Article  PubMed  Google Scholar 

  27. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hubbell JA. Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol. 2003;14:551–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL. Structure and properties of silk hydrogels. Biomacromolecules. 2004;5:786–92.

    Article  CAS  PubMed  Google Scholar 

  30. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310:1139–43.

    Article  CAS  PubMed  Google Scholar 

  31. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  PubMed  Google Scholar 

  32. Ameye L, Young MF. Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology. 2002;12:107R–16R.

    Article  CAS  PubMed  Google Scholar 

  33. Douglas T, Hempel U, Mietrach C, Heinemann S, Scharnweber D, Worch H. Fibrils of different collagen types containing immobilised proteoglycans (PGs) as coatings: characterisation and influence on osteoblast behaviour. Biomol Eng. 2007;24:455–8.

    Article  CAS  PubMed  Google Scholar 

  34. Douglas T, Hempel U, Mietrach C, Viola M, Vigetti D, Heinemann S, Bierbaum S, Scharnweber D, Worch H. Influence of collagen-fibril-based coatings containing decorin and biglycan on osteoblast behavior. J Biomed Mater Res A. 2008;84:805–16.

    Article  PubMed  CAS  Google Scholar 

  35. Beelen RH, Fluitsma DM, Hoefsmit EC. The cellular composition of omentum milky spots and the ultrastructure of milky spot macrophages and reticulum cells. J Reticuloendothel Soc. 1980;28:585–99.

    CAS  PubMed  Google Scholar 

  36. Collins D, Hogan AM, O’Shea D, Winter DC. The omentum: anatomical, metabolic, and surgical aspects. J Gastrointest Surg. 2009;13:1138–46.

    Article  PubMed  Google Scholar 

  37. Mandache E, Moldoveanu E, Savi G. The involvement of omentum and its milky spots in the dynamics of peritoneal macrophages. Morphol Embryol (Bucur). 1985;31:137–42.

    CAS  Google Scholar 

  38. Saqib NU, McGuire PG, Howdieshell TR. The omentum is a site of stromal cell-derived factor 1 alpha production and reservoir for CXC chemokine receptor 4-positive cell recruitment. Am J Surg. 2010;200:276–82.

    Article  CAS  PubMed  Google Scholar 

  39. Shah S, Lowery E, Braun RK, Martin A, Huang N, Medina M, Sethupathi P, Seki Y, Takami M, Byrne K, Wigfield C, Love RB, Iwashima M. Cellular basis of tissue regeneration by omentum. PLoS One. 2012;7:e38368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Asai S, Kamei Y, Torii S. One-stage reconstruction of infected cranial defects using a titanium mesh plate enclosed in an omental flap. Ann Plast Surg. 2004;52:144–7.

    Article  PubMed  Google Scholar 

  41. Maloney CT Jr, Wages D, Upton J, Lee WP. Free omental tissue transfer for extremity coverage and revascularization. Plast Reconstr Surg. 2003;111:1899–904.

    Article  PubMed  Google Scholar 

  42. Shao ZQ, Kawasuji M, Takaji K, Katayama Y, Matsukawa M. Therapeutic angiogenesis with autologous hepatic tissue implantation and omental wrapping. Circ J. 2008;72:1894–9.

    Article  CAS  PubMed  Google Scholar 

  43. Nomi M, Atala A, Coppi PD, Soker S. Principals of neovascularization for tissue engineering. Mol Asp Med. 2002;23:463–83.

    Article  CAS  Google Scholar 

  44. Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26:434–41.

    Article  CAS  PubMed  Google Scholar 

  45. Badylak SF, Valentin JE, Ravindra AK, McCabe JP, Stewart-Akers AM. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A. 2008;14:1835–42.

    Article  CAS  PubMed  Google Scholar 

  46. Charge SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84:209–38.

    Article  CAS  PubMed  Google Scholar 

  47. Grounds MD, Garrett KL, Lai MC, Wright WE, Beilharz MW. Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res. 1992;267:99–104.

    Article  CAS  PubMed  Google Scholar 

  48. Megeney LA, Kablar B, Garrett K, Anderson JE, Rudnicki MA. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev. 1996;10:1173–83.

    Article  CAS  PubMed  Google Scholar 

  49. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.

    Article  CAS  PubMed  Google Scholar 

  50. Gupta V, Davis G, Gordon A, Altman AM, Reece GP, Gascoyne PR, Mathur AB. Endothelial and stem cell interactions on dielectrophoretically aligned fibrous silk fibroin-chitosan scaffolds. J Biomed Mater Res A. 2010;94:515–23.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Health (NIH) and National Institute on Aging (NIA) via NIH/NIA grant R01AG034658. We thank Dr. Samuel M. Hudson (North Carolina State University) for the donation of raw silk and Carmen N. Rios and Victor L. Lam for technical assistance. In addition, we thank the High-Resolution Electron Microscopy Facility (HREMF; Cancer Center Core Grant CA16672) for scanning electron microscopy imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshu B. Mathur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dunne, L.W. et al. (2019). Silk Fibroin-Decorin Engineered Biologics to Repair Musculofascial Defects. In: Duscher, D., Shiffman, M.A. (eds) Regenerative Medicine and Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19962-3_23

Download citation

Publish with us

Policies and ethics