Skip to main content

Scar Treatment and Prevention: Know Thine Enemy

  • Chapter
  • First Online:
Regenerative Medicine and Plastic Surgery

Abstract

Skin damage heals with a scar that helps wound contraction and will bring wound boundaries closer together. The authors discuss wound creation and healing and treatment of scars.

New polymeric based treatments are currently being developed in the laboratory, and in clinical trial models. The wound closure market describes new products needed for an ideal wound cover such as epidermal substitutes, dermal substitutes, and dermoepidermal composite grafts. The battle against scarring could be won by using autologous tissue in new ways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shin D, Minn KW. The effect of myofibroblast on contracture of hypertrophic scar. Plast Reconstr Surg. 2004;113:633–40.

    PubMed  Google Scholar 

  2. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17:763–71.

    PubMed  PubMed Central  Google Scholar 

  3. Heuke S, Vogler N, Meyer T, Akimov D, Kluschke F, Rowert-Huber HJ, Lademann J, Dietzek B, Popp J. Multimodal mapping of human skin. Br J Dermatol. 2013;169:794–803.

    CAS  PubMed  Google Scholar 

  4. Shimizu T, Wolfe LS. Arachidonic acid cascade and signal transduction. J Neurochem. 1990;55:1–15.

    CAS  PubMed  Google Scholar 

  5. Wulff BC, Parent AE, Meleski MA, Dipietro LA, Schrementi ME, Wilgus TA. Mast cells contribute to scar formation during fetal wound healing. J Invest Dermatol. 2012;132:458–65.

    CAS  PubMed  Google Scholar 

  6. Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37:1528–42.

    CAS  PubMed  Google Scholar 

  7. Simpson DG. Dermal templates and the wound-healing paradigm: the promise of tissue regeneration. Expert Rev Med Devices. 2006;3:471–84.

    PubMed  Google Scholar 

  8. Larson BJ, Longaker MT, Lorenz HP. Scarless fetal wound healing: a basic science review. Plast Reconstr Surg. 2010;126:1172–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med. 2011;17:113–25.

    CAS  PubMed  Google Scholar 

  10. Wilgus TA, Bergdall VK, Tober KL, Hill KJ, Mitra S, Flavahan NA, Oberyszyn TM. The impact of cyclooxygenase-2 mediated inflammation on scarless fetal wound healing. Am J Pathol. 2004;165:753–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Adzick NS, Longaker MT. Scarless fetal healing—therapeutic implications. Ann Surg. 1992;215:3–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mendez-Figueroa H, Dahlke JD, Vrees RA, Rouse DJ. Trauma in pregnancy: an updated systematic review. Am J Obstet Gynecol. 2013;209:1–10.

    PubMed  Google Scholar 

  13. Rolfe KJ, Grobbelaar AO. A review of fetal scarless healing. ISRN Dermatol. 2012;2012:698034.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mast BA, Diegelmann RF, Krummel TM, Cohen IK. Scarless wound healing in the mammalian fetus. Surg Gynecol Obstet. 1992;174:441–51.

    CAS  PubMed  Google Scholar 

  15. Dale PD, Sherratt JA, Maini PK. A mathematical model for collagen fibre formation during foetal and adult dermal wound healing. Proc Biol Sci. 1996;263:653–60.

    CAS  PubMed  Google Scholar 

  16. Sullivan KM, Lorenz HP, Meuli M, Lin RY, Adzick NS. A model of scarless human fetal wound repair is deficient in transforming growth factor beta. J Pediatr Surg. 1995;30:198–202.

    CAS  PubMed  Google Scholar 

  17. Lin RY, Adzick NS. The role of the fetal fibroblast and transforming growth factor-beta in a model of human fetal wound repair. Semin Pediatr Surg. 1996;5:165–74.

    CAS  PubMed  Google Scholar 

  18. Lorenz HP, Longaker MT, Perkocha LA, Jennings RW, Harrison MR, Adzick NS. Scarless wound repair: a human fetal skin model. Development. 1992;114:253–9.

    CAS  PubMed  Google Scholar 

  19. Schwartzfarb E, Kirsner RS. Understanding scarring: scarless fetal wound healing as a model. J Invest Dermatol. 2012;132:260.

    CAS  PubMed  Google Scholar 

  20. Ben-Hur H, Gurevich P, Elhayany A, Avinoach I, Schneider DF, Zusman I. Transport of maternal immunoglobulins through the human placental barrier in normal pregnancy and during inflammation. Int J Mol Med. 2005;16:401–7.

    CAS  PubMed  Google Scholar 

  21. Biedermann T, Boettcher-Haberzeth S, Reichmann E. Tissue engineering of skin for wound coverage. Eur J Pediatr Surg. 2013;23:375–82.

    PubMed  Google Scholar 

  22. Moiemen NS, Vlachou E, Staiano JJ, Thawy Y, Frame JD. Reconstructive surgery with Integra dermal regeneration template: histologic study, clinical evaluation, and current practice. Plast Reconstr Surg. 2006;117:160s–74s.

    CAS  PubMed  Google Scholar 

  23. Haifei S, Xingang W, Shoucheng W, Zhengwei M, Chuangang Y, Chunmao H. The effect of collagen-chitosan porous scaffold thickness on dermal regeneration in a one-stage grafting procedure. J Mech Behav Biomed Mater. 2014;29:114–25.

    PubMed  Google Scholar 

  24. Foong DP, Evriviades D, Jeffery SL. Integra permits early durable coverage of improvised explosive device (IED) amputation stumps. J Plast Reconstr Aesthet Surg. 2013;66:1717–24.

    PubMed  Google Scholar 

  25. Truong ATN, Kowal-Vern A, Latenser BA, Wiley DE, Walter RJ. Comparison of dermal substitutes in wound healing utilizing a nude mouse model. J Burns Wounds. 2005;4:e4.

    PubMed  PubMed Central  Google Scholar 

  26. Keck M, Selig HF, Kober J, Lumenta DB, Schachner H, Gugerell A, Kamolz LP. Erratum to: first experiences with a new surgical approach in adult full-thickness burns: single step reconstruction of epidermal, dermal and subcutaneous defects by use of split-thickness skin grafting, a dermal collagen matrix and autologous fat-transfer. Eur Surg. 2013;45:282.

    Google Scholar 

  27. Van Kilsdonk JW, Van Den Bogaard EH, Jansen PA, Bos C, Bergers M, Schalkwijk J. An in vitro wound healing model for evaluation of dermal substitutes. Wound Repair Regen. 2013;21(6):890–6.

    PubMed  Google Scholar 

  28. Clement AL, Moutinho TJ Jr, Pins GD. Micropatterned dermal-epidermal regeneration matrices create functional niches that enhance epidermal morphogenesis. Acta Biomater. 2013;9:9474–84.

    CAS  PubMed  Google Scholar 

  29. Sun G, Zhang X, Shen YI, Sebastian R, Dickinson LE, Fox-Talbot K, Reinblatt M, Steenbergen C, Harmon JW, Gerecht S. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc Natl Acad Sci U S A. 2011;108(52):20976–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Landsman A, Blume PA, Jordan DA Jr, Vayser D, Gutierrez A. An open-label, three-arm pilot study of the safety and efficacy of topical Microcyn Rx wound care versus oral levofloxacin versus combined therapy for mild diabetic foot infections. J Am Podiatr Med Assoc. 2011;101:484–96.

    PubMed  Google Scholar 

  31. Oculus Innovative Sciences, Inc. Microcyn Scar Management Hydrogel. https://www.accessdata.fda.gov/cdrh_docs/pdf13/K131672.pdf.

  32. Fearmonti R, Bond J, Erdmann D, Levinson H. A review of scar scales and scar measuring devices. Eplasty. 2010;10:e43.

    PubMed  PubMed Central  Google Scholar 

  33. Gankande TU, Wood FM, Edgar DW, Duke JM, Dejong HM, Henderson AE, Wallace HJ. A modified Vancouver Scar Scale linked with TBSA (mVSS-TBSA): inter-rater reliability of an innovative burn scar assessment method. Burns. 2013;39:1142–9.

    CAS  PubMed  Google Scholar 

  34. Shalom A, Friedman T, Schein O, Hadad E. A novel short-scar breast reduction technique in large breasts. Aesthet Plast Surg. 2013;37:336–40.

    Google Scholar 

  35. Romanos GE, Strub JR. Effect of Tissucol on connective tissue matrix during wound healing: an immunohistochemical study in rat skin. J Biomed Mater Res. 1998;39:462–8.

    CAS  PubMed  Google Scholar 

  36. Yeilding RH, O’Day DM, Li C, Alexander PT, Mawn LA. Periorbital infections after Dermabond closure of traumatic lacerations in three children. J AAPOS. 2012;16:168–72.

    PubMed  Google Scholar 

  37. Howard BK, Downey SE. Contact dermatitis from Dermabond. Plast Reconstr Surg. 2010;125:252e–3e.

    CAS  PubMed  Google Scholar 

  38. Wong EM, Rainer TH, Ng YC, Chan MS, Lopez V. Cost-effectiveness of Dermabond versus sutures for lacerated wound closure: a randomised controlled trial. Hong Kong Med J. 2011;17(Suppl 6):4–8.

    PubMed  Google Scholar 

  39. Aldunate JLCB, Vana LPM, Fontana C, Ferreira MC. Uso de matriz dérmica associado ao curativo por pressão negativa na abordagem da contratura em pacientes queimados. Rev Bras Cirurg Plást. 2012;27:369–73.

    Google Scholar 

  40. Kirby W, Chen CL, Desai A, Desai T. Causes and recommendations for unanticipated ink retention following tattoo removal treatment. J Clin Aesthet Dermatol. 2013;6:27–31.

    PubMed  PubMed Central  Google Scholar 

  41. Gauglitz GG. Management of keloids and hypertrophic scars: current and emerging options. Clin Cosmet Investig Dermatol. 2013;6:103–14.

    PubMed  PubMed Central  Google Scholar 

  42. Liu A, Moy RL, Ozog DM. Current methods employed in the prevention and minimization of surgical scars. Dermatol Surg. 2011;37:1740–6.

    CAS  PubMed  Google Scholar 

  43. Jackson WM, Nesti LJ, Tuan RS. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther. 2012;3:20.

    PubMed  PubMed Central  Google Scholar 

  44. Haider A, Shaw JC. Treatment of acne vulgaris. J Am Med Assoc. 2004;292:726–35.

    CAS  Google Scholar 

  45. Mandy SH. Tretinoin in the preoperative and postoperative management of dermabrasion. J Am Acad Dermatol. 1986;15:878–9, 888–9.

    Google Scholar 

  46. Capon A, Iarmarcovai G, Mordon S. Laser-assisted skin healing (LASH) in hypertrophic scar revision. J Cosmet Laser Ther. 2009;11:220–3.

    PubMed  Google Scholar 

  47. Capon A, Iarmarcovai G, Gonnelli D, Degardin N, Magalon G, Mordon S. Scar prevention using Laser-Assisted Skin Healing (LASH) in plastic surgery. Aesthet Plast Surg. 2010;34:438–46.

    Google Scholar 

  48. Waibel JS, Wulkan AJ, Shumaker PR. Treatment of hypertrophic scars using laser and laser assisted corticosteroid delivery. Lasers Surg Med. 2013;45:135–40.

    PubMed  Google Scholar 

  49. Nicoletti G, De Francesco F, Mele CM, Cataldo C, Grella R, Brongo S, Accardo M, Ferraro GA, D'Andrea F. Clinical and histologic effects from CO2 laser treatment of keloids. Lasers Med Sci. 2013;28:957–64.

    PubMed  Google Scholar 

  50. Puri N, Talwar A. The efficacy of silicone gel for the treatment of hypertrophic scars and keloids. J Cutan Aesthet Surg. 2009;2:104–6.

    PubMed  PubMed Central  Google Scholar 

  51. O’Brien L, Pandit A. Silicon gel sheeting for preventing and treating hypertrophic and keloid scars. Cochrane Database Syst Rev. 2006;(1):Cd003826.

    Google Scholar 

  52. McCarty M. An evaluation of evidence regarding application of silicone gel sheeting for the management of hypertrophic scars and keloids. J Clin Aesthet Dermatol. 2010;3:39–43.

    PubMed  PubMed Central  Google Scholar 

  53. Mustoe TA. Evolution of silicone therapy and mechanism of action in scar management. Aesthet Plast Surg. 2008;32:82–92.

    Google Scholar 

  54. Li-Tsang CW, Feng BB, Li KC. Pressure therapy of hypertrophic scar after burns and related research. Zhonghua Shao Shang Za Zhi. 2010;26:411–5.

    PubMed  Google Scholar 

  55. Banwell P, Heaton KP, Hardman IJ. Scar reduction apparatus. US 20150032035 A1. https://www.google.com/patents/US20150032035.

  56. Fraccalvieri M, Sarno A, Gasperini S, Zingarelli E, Fava R, Salomone M, Bruschi S. Can single use negative pressure wound therapy be an alternative method to manage keloid scarring? A preliminary report of a clinical and ultrasound/colour-power-Doppler study. Int Wound J. 2013;10:340–4.

    PubMed  Google Scholar 

  57. Larrabee WF Jr, East CA, Jaffe HS, Stephenson C, Peterson KE. Intralesional interferon gamma treatment for keloids and hypertrophic scars. Arch Otolaryngol Head Neck Surg. 1990;116:1159–62.

    PubMed  Google Scholar 

  58. Ud-Din S, Bayat A. Strategic management of keloid disease in ethnic skin: a structured approach supported by the emerging literature. Br J Dermatol. 2013;16(Suppl 3):71–81.

    Google Scholar 

  59. Qiu Y, Ma G, Lin X, Jin Y, Chen H, Hu X. Treating protruding infantile hemangiomas with topical imiquimod 5% cream caused severe local reactions and disfiguring scars. Pediatr Dermatol. 2013;30:342–7.

    PubMed  Google Scholar 

  60. Manca G, Pandolfi P, Gregorelli C, Cadossi M, De Terlizzi F. Treatment of keloids and hypertrophic scars with bleomycin and electroporation. Plast Reconstr Surg. 2013;132:621e–30e.

    CAS  PubMed  Google Scholar 

  61. Har-Shai Y, Amar M, Sabo E. Intralesional cryotherapy for enhancing the involution of hypertrophic scars and keloids. Plast Reconstr Surg. 2003;111:1841–52.

    PubMed  Google Scholar 

  62. Rzaca M, Tarkowski R. Paget’s disease of the nipple treated successfully with cryosurgery: a series of cases report. Cryobiology. 2013;67:30–3.

    CAS  PubMed  Google Scholar 

  63. GBI Research Report Guidance. Wound closure devices market to 2019—new product launches and favorable clinical outcomes for tissue sealants and hemostats drive physician adoption. https://www.marketresearch.com/product/sample-7721928.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Duscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brett, E.A., Duscher, D. (2019). Scar Treatment and Prevention: Know Thine Enemy. In: Duscher, D., Shiffman, M.A. (eds) Regenerative Medicine and Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19962-3_2

Download citation

Publish with us

Policies and ethics