Skip to main content

Absorbable Bone Substitute Materials Based on Calcium Sulfate as Triggers for Osteoinduction and Osteoconduction

  • Chapter
  • First Online:
Regenerative Medicine and Plastic Surgery

Abstract

Calcium sulfate (CS) is employed as a bone substitute in a variety of clinical constellations and can additionally be antibiotically impregnated. These loaded bone substitutes can be applied in orthopedic and trauma surgery for prevention or treatment of bone infections. Its fast biodegradation reveals some concerns and limits the use. Addition of calcium carbonate and tripalmitin renders CS formulations hydrophobic and more resistant to rapid resorption leaving more time for bone formation due to the prolonged degradation process. Biocompatibility and degradation properties of newly formulated antibiotically impregnated CS preparations were examined in detail by implantation into the tibial metaphysis of rabbits. All CS preparations yielded good osteogenesis in association to the implants. None of the analyzed CS preparations triggered contact activation. Every implant demonstrated excellent biocompatibility, with some implants additionally showing excellent features as osteoconductive and -inductive scaffolds and potential for improvement of mechanical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lalidou F, Kolios G, Drosos GI. Bone infections and bone graft substitutes for local antibiotic therapy. Surg Technol Int. 2014;24:353–62.

    PubMed  Google Scholar 

  2. Cortez PP, Silva MA, Santos M, Armada-da-Silva P, Afonso A, Lopes MA, Santos JD, Maurício AC. A glass-reinforced hydroxyapatite and surgical-grade calcium sulfate for bone regeneration: in vivo biological behavior in a sheep model. J Biomater Appl. 2012;27(2):201–17.

    Article  Google Scholar 

  3. Peltier LF. The use of plaster of paris to fill large defects in bone. Am J Surg. 1959;97(3):311–5.

    Article  CAS  Google Scholar 

  4. Helgeson MD, Potter BK, Tucker CJ, Frisch HM, Shawen SB. Antibiotic-impregnated calcium sulfate use in combat-related open fractures. Orthopedics. 2009;32(5):323.

    PubMed  Google Scholar 

  5. Beuerlein MJ, McKee MD. Calcium sulfates: what is the evidence? J Orthop Trauma. 2010;24(Suppl 1):S46–51.

    Article  Google Scholar 

  6. Thomas MV, Puleo DA. Calcium sulfate: properties and clinical applications. J Biomed Mater Res B Appl Biomater. 2009;88(2):597–610.

    Article  Google Scholar 

  7. Slater N, Dasmah A, Sennerby L, Hallman M, Piattelli A, Sammons R. Back-scattered electron imaging and elemental microanalysis of retrieved bone tissue following maxillary sinus floor augmentation with calcium sulphate. Clin Oral Implants Res. 2008;19(8):814–22.

    Article  Google Scholar 

  8. Parsons JR, Ricci JL, Alexander H, Bajpai PK. Osteoconductive composite grouts for orthopedic use. Ann N Y Acad Sci. 1988;523:190–207.

    Article  CAS  Google Scholar 

  9. Stubbs D, Deakin M, Chapman-Sheath P, Bruce W, Debes J, Gillies RM, Walsh WR. Biomaterials. 2004;25(20):5037–44.

    Article  CAS  Google Scholar 

  10. Fan X, Ren H, Luo X, Wang P, Lv G, Yuan H, Li H, Yan Y. Mechanics, degradability, bioactivity, in vitro, and in vivo biocompatibility evaluation of poly(amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone repair. J Biomater Appl. 2016;30(8):1261–72.

    Article  CAS  Google Scholar 

  11. Frost HM. Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res. 1969;3(3):211–37.

    Article  CAS  Google Scholar 

  12. Pforringer D, Obermeier A, Kiokekli M, Büchner H, Vogt S, Stemberger A, Burgkart R, Lucke M. Antimicrobial formulations of absorbable bone substitute materials as drug carriers based on calcium sulfate. Antimicrob Agents Chemother. 2016;60(7):3897–905.

    Article  CAS  Google Scholar 

  13. Borrelli J Jr, Prickett WD, Ricci WM. Treatment of nonunions and osseous defects with bone graft and calcium sulfate. Clin Orthop Relat Res. 2003;411:245–54.

    Article  Google Scholar 

  14. Evaniew N, Tan V, Parasu N, Jurriaans E, Finlay K, Deheshi B, Ghert M. Use of a calcium sulfate-calcium phosphate synthetic bone graft composite in the surgical management of primary bone tumors. Orthopedics. 2013;36(2):e216–22.

    Article  Google Scholar 

  15. Glazer PA, Spencer UM, Alkalay RN, Schwardt J. In vivo evaluation of calcium sulfate as a bone graft substitute for lumbar spinal fusion. Spine J. 2001;1(6):395–401.

    Article  CAS  Google Scholar 

  16. Coetzee AS. Regeneration of bone in the presence of calcium sulfate. Arch Otolaryngol. 1980;106(7):405–9.

    Article  CAS  Google Scholar 

  17. Coraca-Huber D, Hausdorfer J, Fille M, Nogler M, Kuhn KD. Calcium carbonate powder containing gentamicin for mixing with bone grafts. Orthopedics. 2014;37(8):e669–72.

    Article  Google Scholar 

  18. Coraca-Huber DC, Putzer D, Fille M, Hausdorfer J, Nogler M, Kuhn KD. Gentamicin palmitate as a new antibiotic formulation for mixing with bone tissue and local release. Cell Tissue Bank. 2014;15(1):139–44.

    Article  CAS  Google Scholar 

  19. Obermeier A, Matl FD, Schwabe J, Zimmermann A, Kühn KD, Lakemeier S, von Eisenhart-Rothe R, Stemberger A, Burgkart R. Novel fatty acid gentamicin salts as slow-release drug carrier systems for anti-infective protection of vascular biomaterials. J Mater Sci Mater Med. 2012;23(7):1675–83.

    Article  CAS  Google Scholar 

  20. Lebourg L, Biou C. The imbedding of plaster of paris in surgical cavities of the maxilla. Sem Med Prof Med Soc. 1961;37:1195–7.

    CAS  PubMed  Google Scholar 

  21. Geldmacher J. Therapy of enchondroma with a plaster implant—renaissance of a treatment principle. Handchir Mikrochir Plast Chir. 1986;18(6):336–8.

    CAS  PubMed  Google Scholar 

  22. Petruskevicius J, Nielsen S, Kaalund S, Knudsen PR, Overgaard S. No effect of Osteoset, a bone graft substitute, on bone healing in humans: a prospective randomized double-blind study. Acta Orthop Scand. 2002;73(5):575–8.

    Article  Google Scholar 

  23. Bell WH. Resorption characteristics of bone and bone substitutes. Oral Surg Oral Med Oral Pathol. 1964;17:650–7.

    Article  CAS  Google Scholar 

  24. Lillo R, Peltier LF. The substitution of plaster of Paris rods for portions of the diaphysis of the radius in dogs. Surg Forum. 1956;6:556–8.

    CAS  PubMed  Google Scholar 

  25. Tay BK, Patel VV, Bradford DS. Calcium sulfate- and calcium phosphate-based bone substitutes. Mimicry of the mineral phase of bone. Orthop Clin North Am. 1999;30(4):615–23.

    Article  CAS  Google Scholar 

  26. Kelly CM, Wilkins RM, Gitelis S, Hartjen C, Watson JT, Kim PT. The use of a surgical grade calcium sulfate as a bone graft substitute: results of a multicenter trial. Clin Orthop Relat Res. 2001;382:42–50.

    Article  Google Scholar 

  27. Blaha JD. Calcium sulfate bone-void filler. Orthopedics. 1998;21(9):1017–9.

    Article  CAS  Google Scholar 

  28. Calhoun NR, Greene GW Jr, Blackledge GT. Plaster: a bone substitute in the mandible of dogs. J Dent Res. 1965;44(5):940–6.

    Article  CAS  Google Scholar 

  29. McKee JC, Bailey BJ. Calcium sulfate as a mandibular implant. Otolaryngol Head Neck Surg. 1984;92(3):277–86.

    Article  CAS  Google Scholar 

  30. Walsh WR, Morberg P, Yu Y, Yang JL, Haggard W, Sheath PC, Svehla M, Bruce WJ. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin Orthop Relat Res. 2003;406:228–36.

    Article  Google Scholar 

  31. Sidqui M, Collin P, Vitte C, Forest N. Osteoblast adherence and resorption activity of isolated osteoclasts on calcium sulphate hemihydrate. Biomaterials. 1995;16(17):1327–32.

    Article  CAS  Google Scholar 

  32. Orsini G, Ricci J, Scarano A, Pecora G, Petrone G, Iezzi G, Piattelli A. J Biomed Mater Res B Appl Biomater. 2004;68(2):199–208.

    Article  Google Scholar 

Download references

Acknowledgments

At first, we would like to thank Mr. Dr. H. Büchner and Mr. Dr. S. Vogt (Heraeus Medical GmbH, Wehrheim, Germany) for their kind supply of bone substitute materials (Herafill®-G, as well as CaSO4-V). Second, many thanks to the central preclinical research division (ZPF) of the Klinikum rechts der Isar at the Technical University of Munich for their excellent support in performing the animal study. Especially, many thanks to Mrs. Dr. M. Rößner and Prof. Dr. H. Gollwitzer for their guidance in surgical procedure. Also, many thanks to Mrs. Dr. S. Kerschbaumer for generating and interpreting histological slices. Moreover, special thanks to Prof. Dr. P. Augat (Department of Biomechanics at the Unfallklinik Murnau) for his kind support in micro-CT investigations. Our special gratitude goes to Dr. Meredith Kiokekli for co-conduction of the experiments as well as to Mr. F. Seidl (M.A. Interpreting and Translating, MBA) for his kind support due to his perfect command of scientific English.

Disclaimer: Parts of this scientific article have by the authors previously been published in Journal of Material Science Materials in Medicine (Springer International Publishing AG). Reproduction was permitted by Springer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Pförringer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pförringer, D., Obermeier, A. (2019). Absorbable Bone Substitute Materials Based on Calcium Sulfate as Triggers for Osteoinduction and Osteoconduction. In: Duscher, D., Shiffman, M.A. (eds) Regenerative Medicine and Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19962-3_15

Download citation

Publish with us

Policies and ethics