Skip to main content

Ordinary and Activated Bone Substitutes

  • Chapter
  • First Online:
  • 901 Accesses

Abstract

Bone substitutes are highly demanded in clinical practice for grafting of bone defects and alveolar ridge augmentation. Based on the analysis of modern groups of bone substitutes, particularities of their composition, mechanisms of biological effects, and therapeutic indications, applicable classification was proposed which consisted of separation of these materials to “ordinary” and “activated.” The main differential criterion is a presence of biologically active components in the material which are standardized by qualitative and quantitative parameters: growth factors, cells, or gene constructs encoding growth factors. The pronounced osteoinductive and (or) osteogenic properties of activated bone substitutes allow to draw upon their efficacy in substitution of large bone defects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Deev RV, Drobyshev AY, Bozo IY, Isaev AA. Ordinary and activated bone grafts: applied classification and the main features. Biomed Res Int. 2015;2015:365050.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bhatt RA, Rozental TD. Bone graft substitutes. Hand Clin. 2012;28(4):457–68.

    PubMed  Google Scholar 

  3. Deev RV, Bozo IY. Evolution of bone grafts. In: Muldashev ER, editor. Materials of the V Russian symposium with international participation. Ufa: Bashkortostan Publishing; 2012. p. 130–2.

    Google Scholar 

  4. Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rivera JC, Strohbach CA, Wenke JC, et al. Beyond osteogenesis: an in vitro comparison of the potentials of six bone morphogenetic proteins. Front Pharmacol. 2013;4:125.

    PubMed  PubMed Central  Google Scholar 

  6. McMahon MS. Bone morphogenic protein 3 signaling in the regulation of osteogenesis. Orthopedics. 2012;35(11):920.

    PubMed  Google Scholar 

  7. Suzuki Y, Ohga N, Morishita Y, et al. BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci. 2010;123(Pt 10):1684–92.

    CAS  PubMed  Google Scholar 

  8. Finkenzeller G, Hager S, Stark GB. Effects of bone morphogenetic protein 2 on human umbilical vein endothelial cells. Microvasc Res. 2012;84(1):81–5.

    CAS  PubMed  Google Scholar 

  9. Bai Y, Leng Y, Yin G, et al. Effects of combinations of BMP-2 with FGF-2 and/or VEGF on HUVECs angiogenesis in vitro and CAM angiogenesis in vivo. Cell Tissue Res. 2014;356(1):109–21.

    CAS  PubMed  Google Scholar 

  10. Zhu F, Friedman MS, Luo W, et al. The transcription factor osterix (SP7) regulates BMP6-induced human osteoblast differentiation. J Cell Physiol. 2012;227(6):2677–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Friedman MS, Long MW, Hankenson KD. Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J Cell Biochem. 2006;98(3):538–54.

    CAS  PubMed  Google Scholar 

  12. Glienke J, Schmitt AO, Pilarsky C, et al. Differential gene expression by endothelial cells in distinct angiogenic states. Eur J Biochem. 2000;267(9):2820–30.

    CAS  PubMed  Google Scholar 

  13. Kang Q, Sun MH, Cheng H, et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 2004;11(17):1312–20.

    CAS  PubMed  Google Scholar 

  14. Akiyama I, Yoshino O, Osuga Y, et al. Bone morphogenetic protein 7 increased vascular endothelial growth factor (VEGF)-a expression in human granulosa cells and VEGF receptor expression in endothelial cells. Reprod Sci. 2014;21(4):477–82.

    PubMed  PubMed Central  Google Scholar 

  15. Lamplot JD, Qin J, Nan G, et al. BMP9 signaling in stem cell differentiation and osteogenesis. Am J Stem Cells. 2013;2:1): 1–21.

    PubMed  PubMed Central  Google Scholar 

  16. Mayr-Wohlfart U, Waltenberger J, Hausser H, et al. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone. 2002;30(3):472–7.

    CAS  PubMed  Google Scholar 

  17. D’ Alimonte I, Nargi E, Mastrangelo F, et al. Vascular endothelial growth factor enhances in vitro proliferation and osteogenic differentiation of human dental pulp stem cells. J Biol Regul Homeost Agents. 2011;25(1):57–69.

    Google Scholar 

  18. Yang YQ, Tan YY, Wong R, et al. The role of vascular endothelial growth factor in ossification. Int J Oral Sci. 2012;4(2):64–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu Y, Cao H, Yang Y, et al. Effects of vascular endothelial cells on osteogenic differentiation of noncontact co-cultured periodontal ligament stem cells under hypoxia. J Periodontal Res. 2013;48(1):52–65.

    CAS  PubMed  Google Scholar 

  20. Matsumoto T, Bohman S, Dixelius J, et al. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J. 2005;24(13):2342–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhattacharya R, Kwon J, Li X, et al. Distinct role of PLCbeta3 in VEGF-mediated directional migration and vascular sprouting. J Cell Sci. 2009;122(Pt 7):1025–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med. 2012;2(7):a006502.

    PubMed  PubMed Central  Google Scholar 

  23. Marquez-Curtis LA, Janowska-Wieczorek A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. Biomed Res Int. 2013;2013:561098.

    PubMed  PubMed Central  Google Scholar 

  24. Li B, Bai W, Sun P, et al. The effect of CXCL12 on endothelial progenitor cells: potential target for angiogenesis in intracerebral hemorrhage. J Interferon Cytokine Res. 2014. [Epub ahead of print].

    Google Scholar 

  25. Fagiani E, Christofori G. Angiopoietins in angiogenesis. Cancer Lett. 2013;328(1):18–26.

    CAS  PubMed  Google Scholar 

  26. Herzog DP, Dohle E, Bischoff I, et al. Cell communication in a coculture system consisting of outgrowth endothelial cells and primary osteoblasts. Biomed Res Int. 2014;2014:320123.

    PubMed  PubMed Central  Google Scholar 

  27. Shiozawa Y, Jung Y, Ziegler AM, et al. Erythropoietin couples hematopoiesis with bone formation. PLoS One. 2010;5(5):e10853.

    PubMed  PubMed Central  Google Scholar 

  28. Wan L, Zhang F, He Q, et al. EPO promotes bone repair through enhanced cartilaginous callus formation and angiogenesis. PLoS One. 2014;9(7):e102010.

    PubMed  PubMed Central  Google Scholar 

  29. Buemi M, Donato V, Bolignano D. Erythropoietin: pleiotropic actions. Recenti Prog Med. 2010;101(6):253–67.

    PubMed  Google Scholar 

  30. Cokic BB, Cokic VP, Suresh S, et al. Nitric oxide and hypoxia stimulate erythropoietin receptor via MAPK kinase in endothelial cells. Microvasc Res. 2014;92:34–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Park JB. Effects of the combination of fibroblast growth factor-2 and bone morphogenetic protein-2 on the proliferation and differentiation of osteoprecursor cells. Adv Clin Exp Med. 2014;23(3):463–7.

    PubMed  Google Scholar 

  32. Sai Y, Nishimura T, Muta M, et al. Basic fibroblast growth factor is essential to maintain endothelial progenitor cell phenotype in TR-BME2 cells. Biol Pharm Bull. 2014;37(4):688–93.

    CAS  PubMed  Google Scholar 

  33. Aenlle KK, Curtis KM, Roos BA, et al. Hepatocyte growth factor and p38 promote osteogenic differentiation of human mesenchymal stem cells. Mol Endocrinol. 2014;28(5):722–30.

    PubMed  PubMed Central  Google Scholar 

  34. Burgazli KM, Bui KL, Mericliler M, et al. The effects of different types of statins on proliferation and migration of HGF-induced human umbilical vein endothelial cells (HUVECs). Eur Rev Med Pharmacol Sci. 2013;17(21):2874–83.

    CAS  PubMed  Google Scholar 

  35. Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(6):588–610.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sheng MH, Lau KH, Baylink DJ. Role of osteocyte-derived insulin-like growth factor i in developmental growth, modeling, remodeling, and regeneration of the bone. J Bone Metab. 2014;21(1):41–54.

    PubMed  PubMed Central  Google Scholar 

  37. Subramanian IV, Fernandes BC, Robinson T, et al. AAV-2-mediated expression of IGF-1 in skeletal myoblasts stimulates angiogenesis and cell survival. J Cardiovasc Transl Res. 2009;2(1):81–92.

    PubMed  Google Scholar 

  38. Colciago A, Celotti F, Casati L, et al. In vitro effects of PDGF isoforms (AA, BB, AB and CC) on migration and proliferation of SaOS-2 osteoblasts and on migration of human osteoblasts. Int J Biomed Sci. 2009;5(4):380–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Levi B, James AW, Wan DC, et al. Regulation of human adipose-derived stromal cell osteogenic differentiation by insulin-like growth factor-1 and platelet-derived growth factor-alpha. Plast Reconstr Surg. 2010;126(1):41–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wong VW, Crawford JD. Vasculogenic cytokines in wound healing. Biomed Res Int. 2013;2013:190486.

    PubMed  PubMed Central  Google Scholar 

  41. Palioto DB, Rodrigues TL, Marchesan JT, et al. Effects of enamel matrix derivative and transforming growth factor-β1 on human osteoblastic cells. Head Face Med. 2011;7:13.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Peshavariya HM, Chan EC, Liu GS, et al. Transforming growth factor-β1 requires NADPH oxidase 4 for angiogenesis in vitro and in vivo. J Cell Mol Med. 2014;18(6):1172–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao X, Xu Z. Mechanisms of action of angiogenin. Acta Biochim Biophys Sin (Shanghai). 2008;40(7):619–24.

    CAS  Google Scholar 

  44. Urist MR. Bone: formation by autoinduction. Science. 1965;150(698):893–9.

    CAS  Google Scholar 

  45. Omelyanenko NP, Slutsky LI, Connective Tissue MSP. Histophysiology, biochemistry, molecular biology. London: CRC Press; 2013.

    Google Scholar 

  46. Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390(6659):465–71.

    CAS  PubMed  Google Scholar 

  47. Zhou Z, Xie J, Lee D, et al. Neogenin regulation of BMP-induced canonical Smad signaling and endochondral bone formation. Dev Cell. 2010;19:90–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to the clinic. Part I—Basic concepts. J Tissue Eng Regen Med. 2008;2(1):1–13.

    CAS  PubMed  Google Scholar 

  49. Jonason JH, Xiao G, Zhang M, et al. Post-translational regulation of Runx2 in bone and cartilage. J Dent Res. 2009;88:693–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hanai J, Chen LF, Kanno T, et al. Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. J Biol Chem. 1999;274(44):31577–82.

    CAS  PubMed  Google Scholar 

  51. Yoshida A, Yamamoto H, Fujita T, et al. Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev. 2004;18(8):952–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng SL, Shao JS, Charlton-Kachigian N, et al. MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J Biol Chem. 2003;278(46):45969–77.

    CAS  PubMed  Google Scholar 

  53. Merlo GR, Zerega B, Paleari L, et al. Multiple functions of Dlx genes. Int J Dev Biol. 2000;44(6):619–26.

    CAS  PubMed  Google Scholar 

  54. Matsubara T, Kida K, Yamaguchi A, et al. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem. 2008;283(43):29119–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu TM, Lee EH. Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Eng Part B Rev. 2013;19(3):254–63.

    PubMed  Google Scholar 

  56. Yano M, Inoue Y, Tobimatsu T. Smad7 inhibits differentiation and mineralization of mouse osteoblastic cells. Endocr J. 2012;59(8):653–62.

    CAS  PubMed  Google Scholar 

  57. Tsuji K, Bandyopadhyay A, Harfe BD, et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet. 2006;38:1424–9.

    CAS  PubMed  Google Scholar 

  58. Shu B, Zhang M, Xie R, et al. BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J Cell Sci. 2011;124:3428–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, et al. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet. 2006;2:e216.

    PubMed  PubMed Central  Google Scholar 

  60. Tsuji K, Cox K, Bandyop Adhyay A, Harfe BD, et al. BMP4 is dispensable for skeletogenesis and fracture-healing in the limb. J Bone Joint Surg Am. 2008;90(Suppl):14–8.

    PubMed  Google Scholar 

  61. Cohen MM Jr. Biology of RUNX2 and cleidocranial dysplasia. J Craniofac Surg. 2013;24(1):130–3.

    PubMed  Google Scholar 

  62. Roberts T, Stephen L, Beighton P. Cleidocranial dysplasia: a review of the dental, historical, and practical implications with an overview of the South African experience. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115(1):46–55.

    PubMed  Google Scholar 

  63. Otto F, Thornell AP, Cromptonetal T. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89(5):765–71.

    CAS  PubMed  Google Scholar 

  64. Ciurea AV, Toader C. Genetics of craniosynostosis: review of the literature. J Med Life. 2009;2(1):5–17.

    PubMed  Google Scholar 

  65. Folkman J, Merler E, Abernathy C, et al. Isolation of a tumor factor responsible for angiogenesis. J Exp Med. 1971;133(2):275–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013;13(12):871–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Coultas L, Chawengsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature. 2005;438(7070):937–45.

    CAS  PubMed  Google Scholar 

  68. Olsson AK, Dimberg A, Kreuger J, et al. VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol. 2006;7(5):359–71.

    CAS  PubMed  Google Scholar 

  69. Arutyunyan IV, Kananihina YE, Makarov AV. Role of VEGF-A165 receptors in angiogenesis. Cell Transplant Tissue Eng. 2013;8(1):12–8.

    Google Scholar 

  70. Neve A, Cantatore FP, Corrado A, et al. In vitro and in vivo angiogenic activity of osteoarthritic and osteoporotic osteoblasts is modulated by VEGF and vitamin D3 treatment. Regul Pept. 2013;184:81–4.

    CAS  PubMed  Google Scholar 

  71. Marini M, Sarchielli E, Toce M, et al. Expression and localization of VEGF receptors in human fetal skeletal tissues. Histol Histopathol. 2012;27(12):1579–87.

    CAS  PubMed  Google Scholar 

  72. Tombran-Tink J, Barnstable CJ. Osteoblasts and osteoclasts express PEDF, VEGF-A isoforms, and VEGF receptors: possible mediators of angiogenesis and matrix remodeling in the bone. Biochem Biophys Res Commun. 2004;316(2):573–9.

    CAS  PubMed  Google Scholar 

  73. Berendsen AD, Olsen BR. How vascular endothelial growth factor-A (VEGF) regulates differentiation of mesenchymal stem cells. J Histochem Cytochem. 2014;62(2):103–8.

    PubMed  PubMed Central  Google Scholar 

  74. Liu Y, Berendsen AD, Jia S, et al. Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J Clin Invest. 2012;122(9):3101–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tashiro K, Tada H, Heilker R, et al. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science. 1993;261(5121):600–3.

    CAS  PubMed  Google Scholar 

  76. Mellado M, Rodríguez-Frade JM, Mañes S, et al. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol. 2001;19:397–421.

    CAS  PubMed  Google Scholar 

  77. Ward SG. T lymphocytes on the move: chemokines, PI 3-kinase and beyond. Trends Immunol. 2006;27(2):80–7.

    CAS  PubMed  Google Scholar 

  78. Niederberger E, Geisslinger G. Proteomics and NF-κB: an update. Expert Rev Proteomics. 2013;10(2):189–204.

    CAS  PubMed  Google Scholar 

  79. Jung Y, Wang J, Schneider A, et al. Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone. 2006;38(4):497–508.

    CAS  PubMed  Google Scholar 

  80. Khurana S, Melacarne A, Yadak R, et al. SMAD signaling regulates CXCL12 expression in the bone marrow niche, affecting homing and mobilization of hematopoietic progenitors. Stem Cells. 2014;32(11):3012–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Christopher MJ, Liu F, Hilton MJ, et al. Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood. 2009;114(7):1331–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gololobov VG, Deduh NV, Deev RV. Skeletal tissues and organs. In: Guidelines for histology, vol. 2, 2nd ed. Saint-Petersburg: Special Literature Publishing; 2011. p. 238–322.

    Google Scholar 

  83. Xue D, Li F, Chen G, et al. Do bisphosphonates affect bone healing? A meta-analysis of randomized controlled trials. J Orthop Surg Res. 2014;9:45.

    PubMed  PubMed Central  Google Scholar 

  84. Komlev VS, Barinov SM, Bozo II, et al. Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behaviour. ACS Appl Mater Interfaces. 2014;6(19):16610–20.

    CAS  PubMed  Google Scholar 

  85. Gololobov VG, Dulaev AK, Deev RB, et al. Morphofunctional organization, reactivity and regeneration of bone tissue. Saint-Petersburg: MMA; 2006.

    Google Scholar 

  86. Chiapasco M, Casentini P, Zaniboni M. Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implants. 2009;24(Suppl):237–59.

    PubMed  Google Scholar 

  87. Rogers GF, Greene AK. Autogenous bone graft: basic science and clinical implications. J Craniofac Surg. 2012;23(1):323–7.

    PubMed  Google Scholar 

  88. Knight MN, Hankenson KD. Mesenchymal stem cells in bone regeneration. Adv Wound Care (New Rochelle). 2013;2(6):306–16.

    Google Scholar 

  89. Amable PR, Teixeira MV, Carias RB, et al. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Res Ther. 2014;5(2):53.

    PubMed  PubMed Central  Google Scholar 

  90. Zhang M, Mal N, Kiedrowski M, et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 2007;21(12):3197–207.

    CAS  PubMed  Google Scholar 

  91. Samee M, Kasugai S, Kondo H, et al. Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation. J Pharmacol Sci. 2008;108(1):18–31.

    CAS  PubMed  Google Scholar 

  92. Neman J, Duenas V, Kowolik CM, et al. Lineage mapping and characterization of the native progenitor population in cellular allograft. Spine J. 2013;13(2):162–74.

    PubMed  PubMed Central  Google Scholar 

  93. Kerr EJ, Jawahar A, Wooten T, et al. The use of osteo-conductive stem-cells allograft in lumbar interbody fusion procedures: an alternative to recombinant human bone morphogenetic protein. J Surg Orthop Adv. 2011;20(3):193–7.

    PubMed  Google Scholar 

  94. Hollawell SM. Allograft cellular bone matrix as an alternative to autograft in hindfoot and ankle fusion procedures. J Foot Ankle Surg. 2012;51(2):222–5.

    PubMed  Google Scholar 

  95. Osepyan IA, Chaylahyan RK, Garibyan ES. Treatment of non-union fractures, pseudarthroses, defects of long bones with transplantation of autologous bone marrow-derived fibroblasts grown in vitro and placed on the spongy bone matrix. Ortop Travmatol Protez. 1982;9:59.

    Google Scholar 

  96. Osepyan IA, Chaylahyan RK, Garibyan ES, et al. Transplantation of autologous bone marrow-derived fibroblasts in traumatology and orthopedics. Vestn Khir Im I I Grek. 1988;5:56.

    Google Scholar 

  97. Shchepkina EA, Kruglyakov PV, Solomin LN, et al. Transplantation of autologous multipotent mesenchymal stromal cells seeded on demineralized bone matrix in the treatment of pseudarthrosis of long bones. Cell Transplant Tissue Eng. 2007;2(3):67–74.

    Google Scholar 

  98. Drobyshev AY, Rubina KA, Sysoev VY, et al. Clinical trial of tissue-engineered construction based on autologous adipose-derived stromal cells in patients with alveolar bone atrophy of the upper and lower jaws. Bull Exp Clin Surg. 2011;IV(4):764–72.

    Google Scholar 

  99. Effectiveness and safety of method of maxilla alveolar process reconstruction using synthetic tricalcium phosphate and autologous MMSCs. https://clinicaltrials.gov/ct2/show/NCT02209311

  100. Alekseev IS, Volkov AV, Kulakov AA, et al. Clinical and experimental study of combined cell transplant based on adipose-derived multipotent mesenchymal stromal cells in patients with severe bone tissue deficiency of jaws. Cell Transplant Tissue Eng. 2012;7(1):97–105.

    Google Scholar 

  101. Grudyanov AI, Zorin VL, Pereverzev RV, Zorina AI, Bozo IY. Efficiency of autofibroblasts in surgical treatment of parodontitis. Cell Transplant Tissue Eng. 2013;8(3):72–7.

    Google Scholar 

  102. McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). Int Orthop. 2007;31(6):729–34.

    PubMed  PubMed Central  Google Scholar 

  103. Burkus JK, Gornet MF, Dickman C, et al. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech. 2002;15(5):337–49.

    PubMed  Google Scholar 

  104. Dimar JR, Glassman SD, Burkus JK, et al. Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J Bone Joint Surg Am. 2009;91:1377–86.

    PubMed  Google Scholar 

  105. Glassman SD, Carreon LY, Djurasovic M, et al. RhBMP-2 versus iliac crest bone graft for lumbar spine fusion: a randomized, controlled trial in patients over sixty years of age. Spine (Phila Pa 1976). 2008;33(26):2843–9.

    Google Scholar 

  106. Boden SD, Kang J, Sandhu H, et al. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine. 2002;27:2662–73.

    PubMed  Google Scholar 

  107. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11(6):471–91.

    PubMed  Google Scholar 

  108. Woo EJ. Adverse events reported after the use of recombinant human bone morphogenetic protein 2. J Oral Maxillofac Surg. 2012;70(4):765–7.

    PubMed  Google Scholar 

  109. Epstein NE. Complications due to the use of BMP/INFUSE in spine surgery: the evidence continues to mount. Surg Neurol Int. 2013;4(Suppl 5):S343–52.

    PubMed  PubMed Central  Google Scholar 

  110. Chekanov AV, Fadeev IS, Akatov VS, et al. Quantitative effect of improving osteoinductive property of a material due to application of recombinant morphogenetic bone protein rhВМР-2. Cellular Transplant Tissue Eng. 2012;7(2):75–81.

    Google Scholar 

  111. Muraev AA, Ivanov SY, Artifexova AA, et al. Study of the biological properties of a new material based on osteoplastic nondemineralized collagen containing vascular endothelial growth factor in bone defects repair. Curr Technol Med. 2012;1:21–6.

    Google Scholar 

  112. Zhang W, Zhu C, Wu Y, et al. VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. Eur Cell Mater. 2014;27:1–11.

    PubMed  Google Scholar 

  113. Holloway JL, Ma H, Rai R, et al. Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. J Control Release. 2014;191:63–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lauzon MA, Bergeron E, Marcos B, et al. Bone repair: new developments in growth factor delivery systems and their mathematical modeling. J Control Release. 2012;162(3):502–20.

    CAS  PubMed  Google Scholar 

  115. Yun YR, Jang JH, Jeon E, et al. Administration of growth factors for bone regeneration. Regen Med. 2012;7(3):369–85.

    CAS  PubMed  Google Scholar 

  116. Chang PC, Dovban AS, Lim LP, et al. Dual delivery of PDGF and simvastatin to accelerate periodontal regeneration in vivo. Biomaterials. 2013;34(38):9990–7.

    CAS  PubMed  Google Scholar 

  117. Kasten P, Beyen I, Bormann D, et al. The effect of two point mutations in GDF-5 on ectopic bone formation in a beta-tricalcium phosphate scaffold. Biomaterials. 2010;31:3878–84.

    CAS  PubMed  Google Scholar 

  118. Kleinschmidt K, Ploeger F, Nickel J, et al. Enhanced reconstruction of long bone architecture by a growth factor mutant combining positive features of GDF-5 and BMP-2. Biomaterials. 2013;34(24):5926–36.

    CAS  PubMed  Google Scholar 

  119. Gene therapy clinical trials worldwide. http://www.abedia.com/wiley/years.php.

  120. Deev RV, Bozo IY, Mzhavanadze ND, et al. pCMV-vegf165 intramuscular gene transfer is an effective methomd of treatment for patients with chronic lower limb ischemia. J Cardiovasc Pharmacol Ther. 2015;20(5):473–82.

    CAS  PubMed  Google Scholar 

  121. Deev R, Plaksa I, Bozo I, et al. Results of an international postmarketing surveillance study of pl-VEGF165 safety and efficacy in 210 patients with peripheral arterial disease. Am J Cardiovasc Drugs. 2017;17(3):235–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Bozo IY, Deev RV, Drobyshev AY, et al. World’s first clinical case of gene-activated bone substitute application. Case Rep Dent. 2016;2016:8648949.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Deev RV, Drobyshev RV, Bozo IY, et al. Construction and biological effect evaluation of gene-activated osteoplastic material with human vegf gene. Cell Transplant Tissue Eng. 2013;8(3):78–85.

    Google Scholar 

  124. Wegman F, Bijenhof A, Schuijff L, et al. Osteogenic differentiation as a result of BMP-2 plasmid DNA based gene therapy in vitro and in vivo. Eur Cell Mater. 2011;21:230–42.

    CAS  PubMed  Google Scholar 

  125. Baboo S, Cook PR. “Dark matter” worlds of unstable RNA and protein. Nucleus. 2014;5(4):281–6.

    PubMed  PubMed Central  Google Scholar 

  126. Evans CH. Gene delivery to bone. Adv Drug Deliv Rev. 2012;64(12):1331–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Grigorian AS, Schevchenko KG. Some possible molecular mechanisms of VEGF encoding plasmids functioning. Cell Transplant Tissue Eng. 2011;6(3):24–8.

    Google Scholar 

  128. Rose T, Peng H, Usas A, et al. Ex-vivo gene therapy with BMP-4 for critically sized defects and enhancement of fracture healing in an osteoporotic animal model. Unfallchirurg. 2005;108(1):25–34.

    CAS  PubMed  Google Scholar 

  129. Cao L, Liu X, Liu S, et al. Experimental repair of segmental bone defects in rabbits by angiopoietin-1 gene transfected MSCs seeded on porous β-TCP scaffolds. J Biomed Mater Res B Appl Biomater. 2012;100(5):1229–36.

    PubMed  Google Scholar 

  130. Betz VM, Betz OB, Glatt V, et al. Healing of segmental bone defects by direct percutaneous gene delivery: effect of vector dose. Hum Gene Ther. 2007;18(10):907–15.

    CAS  PubMed  Google Scholar 

  131. Baltzer AW, Lattermann C, Whalen JD, et al. Genetic enhancement of fracture repair: healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene. Gene Ther. 2000;7(9):734–9.

    CAS  PubMed  Google Scholar 

  132. Virk MS, Conduah A, Park SH, et al. Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone. 2008;42(5):921–31.

    CAS  PubMed  Google Scholar 

  133. Lutz R, Park J, Felszeghy E, et al. Bone regeneration after topical BMP-2-gene delivery in circumferential peri-implant bone defects. Clin Oral Implants Res. 2008;19(6):590–9.

    PubMed  Google Scholar 

  134. Chen JC, Winn SR, Gong X, et al. rhBMP-4 gene therapy in a juvenile canine alveolar defect model. Plast Reconstr Surg. 2007;120(6):1503–9.

    CAS  PubMed  Google Scholar 

  135. Sheyn D, Kallai I, Tawackoli W, et al. Gene-modified adult stem cells regenerate vertebral bone defect in a rat model. Mol Pharm. 2011;8(5):1592–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Bertone AL, Pittman DD, Bouxsein ML, et al. Adenoviral-mediated transfer of human BMP-6 gene accelerates healing in a rabbit ulnar osteotomy model. J Orthop Res. 2004;22(6):1261–70.

    CAS  PubMed  Google Scholar 

  137. Li JZ, Li H, Hankins GR, et al. Different osteogenic potentials of recombinant human BMP-6 adeno-associated virus and adenovirus in two rat strains. Tissue Eng. 2006;12(2):209–19.

    CAS  PubMed  Google Scholar 

  138. Bright C, Park YS, Sieber AN, et al. In vivo evaluation of plasmid DNA encoding OP-1 protein for spine fusion. Spine (Phila Pa 1976). 2006;31(19):2163–72.

    Google Scholar 

  139. Schek RM, Hollister SJ, Krebsbach PH. Delivery and protection of adenoviruses using biocompatible hydrogels for localized gene therapy. Mol Ther. 2004;9(1):130–8.

    CAS  PubMed  Google Scholar 

  140. Song K, Rao N, Chen M, et al. Construction of adeno-associated virus system for human bone morphogenetic protein 7 gene. J Huazhong Univ Sci Technolog Med Sci. 2008;28(1):17–21.

    CAS  PubMed  Google Scholar 

  141. Breitbart AS, Grande DA, Mason J, et al. Gene-enhanced tissue engineering: applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene. Ann Plast Surg. 1999;42(5):488–95.

    CAS  PubMed  Google Scholar 

  142. Kimelman-Bleich N, Pelled G, Zilberman Y, et al. Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair. Mol Ther. 2011;19(1):53–9.

    CAS  PubMed  Google Scholar 

  143. Abdelaal MM, Tholpady SS, Kessler JD, et al. BMP-9-transduced prefabricated muscular flaps for the treatment of bony defects. J Craniofac Surg. 2004;15(5):736–41.

    PubMed  Google Scholar 

  144. Kuroda S, Goto N, Suzuki M, et al. Regeneration of bone- and tendon/ligament-like tissues induced by gene transfer of bone morphogenetic protein-12 in a rat bone defect. J Tissue Eng. 2010;2010:891049.

    PubMed  PubMed Central  Google Scholar 

  145. Rundle CH, Strong DD, Chen ST, et al. Retroviral-based gene therapy with cyclooxygenase-2 promotes the union of bony callus tissues and accelerates fracture healing in the rat. J Gene Med. 2008;10(3):229–41.

    CAS  PubMed  Google Scholar 

  146. Li C, Ding J, Jiang L, et al. Potential of mesenchymal stem cells by adenovirus-mediated erythropoietin gene therapy approaches for bone defect. Cell Biochem Biophys. 2014;70(2):1199–204.

    CAS  PubMed  Google Scholar 

  147. Wallmichrath JC, Stark GB, Kneser U, et al. Epidermal growth factor (EGF) transfection of human bone marrow stromal cells in bone tissue engineering. J Cell Mol Med. 2009;13(8B):2593–601.

    CAS  PubMed  Google Scholar 

  148. Guo X, Zheng Q, Kulbatski I, et al. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds. Biomed Mater. 2006;1(3):93–9.

    CAS  PubMed  Google Scholar 

  149. Wen Q, Zhou C, Luo W, et al. Pro-osteogenic effects of fibrin glue in treatment of avascular necrosis of the femoral head in vivo by hepatocyte growth factor-transgenic mesenchymal stem cells. J Transl Med. 2014;12:114.

    PubMed  PubMed Central  Google Scholar 

  150. Zou D, Zhang Z, He J, et al. Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs. Biomaterials. 2012;33(7):2097–108.

    CAS  PubMed  Google Scholar 

  151. Shen FH, Visger JM, Balian G, et al. Systemically administered mesenchymal stromal cells transduced with insulin-like growth factor-I localize to a fracture site and potentiate healing. J Orthop Trauma. 2002;16(9):651–9.

    PubMed  Google Scholar 

  152. Srouji S, Ben-David D, Fromigué O, et al. Lentiviral-mediated integrin α5 expression in human adult mesenchymal stromal cells promotes bone repair in mouse cranial and long-bone defects. Hum Gene Ther. 2012;23(2):167–72.

    CAS  PubMed  Google Scholar 

  153. Strohbach CA, Rundle CH, Wergedal JE, et al. LMP-1 retroviral gene therapy influences osteoblast differentiation and fracture repair: a preliminary study. Calcif Tissue Int. 2008;83(3):202–11.

    CAS  PubMed  Google Scholar 

  154. Lattanzi W, Parrilla C, Fetoni A. Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models. Gene Ther. 2008;15(19):1330–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Lu SS, Zhang X, Soo C, et al. The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J. 2007;7(1):50–60.

    PubMed  Google Scholar 

  156. Tu Q, Valverde P, Li S, et al. Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone. Tissue Eng. 2007;13(10):2431–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Jin Q, Anusaksathien O, Webb SA, et al. Engineering of tooth-supporting structures by delivery of PDGF gene therapy vectors. Mol Ther. 2004;9(4):519–26.

    CAS  PubMed  Google Scholar 

  158. Elangovan S, D’Mello SR, Hong L, et al. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials. 2014;35(2):737–47.

    CAS  PubMed  Google Scholar 

  159. Fang J, Zhu YY, Smiley E, et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci U S A. 1996;93(12):5753–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Pan H, Zheng Q, Yang S, et al. A novel peptide-modified and gene-activated biomimetic bone matrix accelerating bone regeneration. J Biomed Mater Res A. 2014;102(8):2864–74.

    PubMed  Google Scholar 

  161. Geiger F, Bertram H, Berger I, et al. Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res. 2005;20(11):2028–35.

    CAS  PubMed  Google Scholar 

  162. Tarkka T, Sipola A, Jämsä T, et al. Adenoviral VEGF-A gene transfer induces angiogenesis and promotes bone formation in healing osseous tissues. J Gene Med. 2003;5(7):560–6.

    CAS  PubMed  Google Scholar 

  163. Koh JT, Zhao Z, Wang Z, et al. Combinatorial gene therapy with BMP2/7 enhances cranial bone regeneration. J Dent Res. 2008;87(9):845–9.

    CAS  PubMed  Google Scholar 

  164. Menendez MI, Clark DJ, Carlton M, et al. Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model. Osteoarthr Cartil. 2011;19(8):1066–75.

    CAS  Google Scholar 

  165. Reichert JC, Schmalzl J, Prager P, et al. Synergistic effect of Indian hedgehog and bone morphogenetic protein-2 gene transfer to increase the osteogenic potential of human mesenchymal stem cells. Stem Cell Res Ther. 2013;4(5):105.

    PubMed  PubMed Central  Google Scholar 

  166. Deng Y, Zhou H, Yan C, et al. In vitro osteogenic induction of bone marrow stromal cells with encapsulated gene-modified bone marrow stromal cells and in vivo implantation for orbital bone repair. Tissue Eng Part A. 2014;20(13-14):2019–29.

    CAS  PubMed  Google Scholar 

  167. Liu J, Xu L, Li Y, et al. Temporally controlled multiple-gene delivery in scaffolds: a promising strategy to enhance bone regeneration. Med Hypotheses. 2011;76(2):173–5.

    CAS  PubMed  Google Scholar 

  168. Zhang Y, Cheng N, Miron R, et al. Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects. Biomaterials. 2012;33(28):6698–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Ito H, Koefoed M, Tiyapatanaputi P, et al. Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat Med. 2005;11(3):291–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Feichtinger GA, Hofmann AT, Slezak P, et al. Sonoporation increases therapeutic efficacy of inducible and constitutive BMP2/7 in vivo gene delivery. Hum Gene Ther Methods. 2014;25(1):57–71.

    CAS  PubMed  Google Scholar 

  171. Wehrhan F, Amann K, Molenberg A, et al. Critical size defect regeneration using PEG-mediated BMP-2 gene delivery and the use of cell occlusive barrier membranes—the osteopromotive principle revisited. Clin Oral Implants Res. 2013;24(8):910–20.

    PubMed  Google Scholar 

  172. Die X, Luo Q, Chen C, et al. Construction of a recombinant adenovirus co-expressing bone morphogenic proteins 9 and 6 and its effect on osteogenesis in C3H10 cells. Nan Fang Yi Ke Da Xue Xue Bao. 2013;33(9):1273–9.

    CAS  PubMed  Google Scholar 

  173. Seamon J, Wang X, Cui F, et al. Adenoviral delivery of the VEGF and BMP-6 genes to rat mesenchymal stem cells potentiates osteogenesis. Bone Marrow Res. 2013;2013:737580.

    PubMed  PubMed Central  Google Scholar 

  174. Yang L, Zhang Y, Dong R, et al. Effects of adenoviral-mediated coexpression of bone morphogenetic protein-7 and insulin-like growth factor-1 on human periodontal ligament cells. J Periodontal Res. 2010;45(4):532–40.

    CAS  PubMed  Google Scholar 

  175. Liu JZ, Hu YY, Ji ZL. Co-expression of human bone morphogenetic protein-2 and osteoprotegerin in myoblast C2C12. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2003;17(1):1–4.

    PubMed  Google Scholar 

  176. Kim MJ, Park JS, Kim S, et al. Encapsulation of bone morphogenic protein-2 with Cbfa1-overexpressing osteogenic cells derived from human embryonic stem cells in hydrogel accelerates bone tissue regeneration. Stem Cells Dev. 2011;20(8):1349–58.

    CAS  PubMed  Google Scholar 

  177. Li J, Zhao Q, Wang E, et al. Transplantation of Cbfa1-overexpressing adipose stem cells together with vascularized periosteal flaps repair segmental bone defects. J Surg Res. 2012;176(1):e13–20.

    CAS  PubMed  Google Scholar 

  178. Bhattarai G, Lee YH, Lee MH, et al. Gene delivery of c-myb increases bone formation surrounding oral implants. J Dent Res. 2013;92(9):840–5.

    CAS  PubMed  Google Scholar 

  179. Zhao Z, Wang Z, Ge C, et al. Healing cranial defects with AdRunx2-transduced marrow stromal cells. J Dent Res. 2007;86(12):1207–11.

    CAS  PubMed  Google Scholar 

  180. Takahashi T. Overexpression of Runx2 and MKP-1 stimulates transdifferentiation of 3T3-L1 preadipocytes into bone-forming osteoblasts in vitro. Calcif Tissue Int. 2011;88(4):336–47.

    CAS  PubMed  Google Scholar 

  181. Cucchiarini M, Orth P, Madry H. Direct rAAV SOX9 administration for durable articular cartilage repair with delayed terminal differentiation and hypertrophy in vivo. J Mol Med (Berl). 2013;91(5):625–36.

    CAS  Google Scholar 

  182. Itaka K, Ohba S, Miyata K, et al. Bone regeneration by regulated in vivo gene transfer using biocompatible polyplex nanomicelles. Mol Ther. 2007;15(9):1655–62.

    CAS  PubMed  Google Scholar 

  183. Keeney M, van den Beucken JJ, van der Kraan PM, et al. The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165). Biomaterials. 2010;31(10):2893–902.

    CAS  PubMed  Google Scholar 

  184. Calori GM, Phillips M, Jeetle S, Tagliabue L, Giannoudis PV. Classification of non-union: need for a new scoring system? Injury. 2008;39(Suppl 2):S59–63.

    PubMed  Google Scholar 

  185. Anitua E, Alkhraisat MH, Orive G. Perspectives and challenges in regenerative medicine using plasma rich in growth factors. J Control Release. 2012;157(1):29–38.

    CAS  PubMed  Google Scholar 

  186. Shaw RJ, Brown JS. Osteomyocutaneous deep circumflex iliac artery perforator flap in the reconstruction of midface defect with facial skin loss: a case report. Microsurgery. 2009;29(4):299–302.

    PubMed  Google Scholar 

  187. Duarte Campos DF, Blaeser A, Buellesbach K, et al. Bioprinting organotypic hydrogels with improved mesenchymal stem cell remodeling and mineralization properties for bone tissue engineering. Adv Healthc Mater. 2016;5(11):1336–45.

    CAS  PubMed  Google Scholar 

  188. Shim JH, Kim SE, Park JY, et al. Three-dimensional printing of rhBMP-2-loaded scaffolds with long-term delivery for enhanced bone regeneration in a rabbit diaphyseal defect. Tissue Eng Part A. 2014;20(13–14):1980–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Bozo IY, Komlev VS, Drobyshev AY, et al. Method for creating a personalized gene-activated implant for regenerating bone tissue. EP3130342, US20170209626 A1. Priority date Feb. 10; 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bozo, I.Y., Deev, R.V., Drobyshev, A.Y., Isaev, A.A. (2019). Ordinary and Activated Bone Substitutes. In: Duscher, D., Shiffman, M.A. (eds) Regenerative Medicine and Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19962-3_14

Download citation

Publish with us

Policies and ethics