Skip to main content

Bacteriophages as Biocontrol Agents of Biofilm Infections Associated with Abiotic Prosthetic Devices

  • Chapter
  • First Online:
Regenerative Medicine and Plastic Surgery

Abstract

The use of abiotic prosthetic devices forms an integral component of regenerative medicine in case of tissue or organ failure. The biomaterials used for the devices are prone to microbial infections in the form of microbial biofilms. Biofilms are microbial colonies that adhere to abiotic or biotic surface and are characterized with the secretion of quorum sensing molecules and an enveloping exopolymeric matrix that protect its micro-residents from antimicrobial substances and immune response, making them highly recalcitrant and difficult to eradicate. Lytic bacteriophages are viruses that are bacteria-specific intracellular predators with the ability to penetrate microbial biofilms and eradicate them. The use of bacteriophages to treat microbial biofilm infections is gaining popularity as phage therapy, and this review explores the use of bacteriophage therapy in control of biofilm infections associated with abiotic prosthetic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hutmatcher D. Regenerative medicine will impact, but not replace medical device industry. Expert Rev Med Devices. 2006;3(4):1745–2422.

    Google Scholar 

  2. Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol. 2015;64:323–34.

    PubMed  Google Scholar 

  3. Wagner C, Hänsch GM. Mechanisms of bacterial colonization of implants and host response. In: A modern approach to biofilm-reltaed orthopaedic implant infections advances in experimental medicine and biology. Cham: Springer; 2016. p. 15–27.

    Google Scholar 

  4. Doll K, Jongsthaphongpun KL, Stumpp NS, Winkel A, Stiesch M. Quantifying implant-associated biofilms: comparison of microscopic, microbiologic and biochemical methods. J Microbiol Methods. 2016;130:61–8.

    CAS  PubMed  Google Scholar 

  5. Pantanella F, Valenti P, Natalizi T, Passeri D, Berlutti F. Analytical techniques to study microbial biofilm on abiotic surfaces: pros and cons of the main techniques currently in use. Ann Ig. 2013;25(1):31–42.

    CAS  PubMed  Google Scholar 

  6. Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. Int J Artif Organs. 2005;28(11):1062–8.

    CAS  PubMed  Google Scholar 

  7. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22.

    CAS  PubMed  Google Scholar 

  8. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322–32.

    PubMed  Google Scholar 

  9. Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence. 2013;4(3):223–9.

    PubMed  PubMed Central  Google Scholar 

  10. Khelissa SO, Abdallah M, Jama C, Faille C, Chihib N-E. Bacterial contamination and biofilm formation on abiotic surfaces and strategies to overcome their persistence. J Mater Environ Sci. 2017;8(9):3326–46.

    CAS  Google Scholar 

  11. Hofer U. Biofilms: turning tides for quorum sensing. Nat Rev Microbiol. 2016;14(2):64–5.

    CAS  PubMed  Google Scholar 

  12. Sharma S, Chatterjee S, Datta S, Prasad R, Dubey D, Prasad RK, et al. Bacteriophages and its applications: an overview. Folia Microbiol (Praha). 2017;62(1):17–55.

    CAS  Google Scholar 

  13. Weber-Dąbrowska B, Jończyk-Matysiak E, Żaczek M, Łobocka M, Łusiak-Szelachowska M, Górski A. Bacteriophage procurement for therapeutic purposes. Front Microbiol. 2016;7:1177.

    PubMed  PubMed Central  Google Scholar 

  14. Kaistha S, Umrao P. Bacteriophage for mitigation of multiple drug resistant biofilm forming pathogens. Recent Pat Biotechnol. 2016;10(2):184–94.

    CAS  PubMed  Google Scholar 

  15. Ackermann H-W, Węgrzyn G. General characteristics of bacteriophages. In: Phage therapy: current research and applications. Norfolk: Caister Academic Press; 2014. p. 43–56.

    Google Scholar 

  16. Cisek AA, Dąbrowska I, Gregorczyk KP, Wyżewski Z. Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Curr Microbiol. 2017;74(2):277–83.

    CAS  PubMed  Google Scholar 

  17. Wittebole X, De Roock S, Opal SM. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence. 2014;5(1):226–35.

    PubMed  Google Scholar 

  18. Vandenheuvel D, Lavigne R, Ussow HB, Brüssow H. Bacteriophage therapy: advances in formulation strategies and human clinical trials. Annu Rev Virol. 2015;2(1):599–618.

    CAS  PubMed  Google Scholar 

  19. Sulakvelidze A, Alavidze Z, Morris JG Jr. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45(3):649–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sunderland KS, Yang M, Mao C. Phage-enabled nanomedicine: from probes to therapeutics in precision medicine HHS public access. Angew Chem Int Ed Engl Febr. 2017;13(568):1964–92.

    Google Scholar 

  21. Garrett TR, Bhakoo M, Zhang Z. Bacterial adhesion and biofilms on surfaces. Prog Nat Sci. 2008;18(9):1049–56.

    CAS  Google Scholar 

  22. Laverty G, Gorman S, Gilmore B. Biofilms and implant associated infections. In: Barnes L, Cooper IR, editors. Biomaterials and medical device associated infections. Cambridge: Woodhead Publishers, Elsevier; 2015. p. 19–37.

    Google Scholar 

  23. Berne C, Ducret A, Hardy GG, Brun YV. Adhesins involved in attachment to abiotic surfaces by gram-negative bacteria. Microbiol Spectr. 2015;3(4):1–46.

    CAS  Google Scholar 

  24. Valentini M, Filloux A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem. 2016;291(24):12547–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wei Q, Ma LZ. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci. 2013;14(10):20983–1005.

    PubMed  PubMed Central  Google Scholar 

  26. Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33.

    CAS  PubMed  Google Scholar 

  27. Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol. 2008;6(3):199–210.

    CAS  PubMed  Google Scholar 

  28. James SA, Powell LC, Wright CJ. Atomic force microscopy of biofilms—Imaging, interactions, and mechanics. In: Dhanasekaran D, editor. Microbial biofilms - importance and applications. Rijeka: Intech Ope; 2016.

    Google Scholar 

  29. Schlafer S, Meyer RL. Confocal microscopy imaging of the biofilm matrix. J Microbiol Methods. 2017;138:50–9.

    PubMed  Google Scholar 

  30. Papenfort K, Bassler BL. Quorum sensing signal–response systems in gram-negative bacteria. Nat Rev Microbiol. 2016;14(9):576–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y-H, Tian X. Quorum sensing and bacterial social interactions in biofilms. Sensors. 2012;12(12):2519–38.

    CAS  PubMed  Google Scholar 

  32. Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012;2(11):a012427.

    PubMed  PubMed Central  Google Scholar 

  33. Vidal JE, Howery KE, Ludewick HP, Nava P, Klugman KP. Quorum-sensing systems LuxS/autoinducer 2 and Com regulate Streptococcus pneumoniae biofilms in a bioreactor with living cultures of human respiratory cells. Infect Immun. 2013;81(4):1341–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Koul S, Prakash J, Mishra A, Kalia VC. Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Indian J Microbiol. 2016;56(1):1–18.

    CAS  PubMed  Google Scholar 

  35. Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunol Med Microbiol. 2010;59:253–68.

    Google Scholar 

  36. Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol. 2014;18:96–104.

    CAS  PubMed  Google Scholar 

  37. Ueda A, Wood TK. Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog. 2009;5(6):e1000483.

    PubMed  PubMed Central  Google Scholar 

  38. Nickzad A, Déziel E. The involvement of rhamnolipids in microbial cell adhesion and biofilm development - an approach for control? Lett Appl Microbiol. 2014;58(5):447–53.

    CAS  PubMed  Google Scholar 

  39. Singhai M, Malik A, Shahid M, Malik MA, Goyal R. A study on device-related infections with special reference to biofilm production and antibiotic resistance. J Glob Infect. 2012;4(4):193–8.

    CAS  Google Scholar 

  40. Inacio RC, Klautau GB, Murça MAS, da Silva CB, Nigro S, Rivetti LA, et al. Microbial diagnosis of infection and colonization of cardiac implantable electronic devices by use of sonication. Int J Infect Dis. 2015;38:54–9.

    PubMed  Google Scholar 

  41. Gominet M, Compain F, Beloin C, Lebeaux D. Central venous catheters and biofilms: where do we stand in 2017? APMIS. 2017;125(4):365–75.

    CAS  PubMed  Google Scholar 

  42. Majumder MI, Ahmed T, Hossain D, Ali M, Islam B, Chowdhury NH. Bacteriology and antibiotic sensitivity patterns of urine and biofilm in patients with indwelling urinary catheter in a tertiary hospital in bangladesh. J Bacteriol Parasitol. 2014;5(3):1–5.

    CAS  Google Scholar 

  43. Soto SM, M. S. Importance of biofilms in urinary tract infections: new therapeutic approaches. Adv Biol. 2014;2014:1–13.

    Google Scholar 

  44. Trampuz A, Zimmerli W. Diagnosis and treatment of implant-associated septic arthritis and osteomyelitis. Curr Infect Dis Rep. 2008;10(5):394–403.

    PubMed  Google Scholar 

  45. McConoughey SJ, Howlin R, Granger JF, Manring MM, Calhoun JH, Shirtliff M, et al. Biofilms in periprosthetic orthopedic infections. Future Microbiol. 2014;9(8):987–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Antony S, Farran Y. Prosthetic joint and orthopedic device related infections. The role of biofilm in the pathogenesis and treatment. Infect Disord Drug Targets. 2016;16(1):22–7.

    CAS  PubMed  Google Scholar 

  47. Baddour LM, Epstein AE, Erickson CC, Knight BP, Levison ME, Lockhart PB, et al. Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation. 2010;121(3):458–77.

    PubMed  Google Scholar 

  48. Fernández-Barat L, Torres A. Biofilms in ventilator-associated pneumonia. Future Microbiol. 2016;11(12):1599–610.

    PubMed  Google Scholar 

  49. Danin P-E, Girou E, Legrand P, Louis B, Fodil R, Christov C, et al. Description and microbiology of endotracheal tube biofilm in mechanically ventilated subjects. Respir Care. 2015;60(1):21–9.

    PubMed  Google Scholar 

  50. Katiyar R, Vishwakarma A, Kaistha SD. Analysis of biofilm formation and antibiotic resistance of microbial isolates from intraocular lens following conventional extracapsular cataract surgery. Int J Res Pure Appl Microbiol. 2012;2(2):20–4.

    Google Scholar 

  51. Bispo PJM, Haas W, Gilmore MS. Biofilms in infections of the eye. Pathogens. 2015;4(1):111–36.

    PubMed  PubMed Central  Google Scholar 

  52. Gbejuade HO, Lovering AM, Webb JC. The role of microbial biofilms in prosthetic joint infections. Acta Orthop. 2015;86(2):147–58.

    PubMed  PubMed Central  Google Scholar 

  53. Smeets R, Henningsen A, Jung O, Heiland M, Hammächer C, Stein JM. Definition, etiology, prevention and treatment of peri-implantitis—a review. Head Face Med. 2014;10:34.

    PubMed  PubMed Central  Google Scholar 

  54. Tavares F, Pereira J, Lima K, Carreiro A, Henriques B, Silva F, et al. Relation between dental implant joint surfaces and biofilm formation. Dentistry. 2015;5(5)

    Google Scholar 

  55. Kim K-K, Sung H-M. Outcomes of dental implant treatment in patients with generalized aggressive periodontitis: a systematic review. J Adv Prosthodont. 2012;4(4):210–7.

    PubMed  PubMed Central  Google Scholar 

  56. Auler ME, Morreira D, Rodrigues FFO, Abr Ão MS, Margarido PFR, Matsumoto FE, et al. Biofilm formation on intrauterine devices in patients with recurrent vulvovaginal candidiasis. Med Mycol. 2010;48(1):211–6.

    CAS  PubMed  Google Scholar 

  57. Zahran KM, Agban MN, Ahmed SH, Hassan EA, Sabet MA. Patterns of Candida biofilm on intrauterine devices. J Med Microbiol. 2015;64(Pt_4):375–81.

    PubMed  Google Scholar 

  58. Faller M, Kohler T. The status of biofilms in penile implants. Microorganisms. 2017;5(2):19–25.

    PubMed Central  Google Scholar 

  59. Amalaradjou MAR, Venkitanaray K. Role of bacterial biofilms in catheter-associated urinary tract infections (CAUTI) and strategies for their control. In: Thomas N, editor. Recent Advances in the field of urinary tract infections. Vienna, Austria: InTech Open; 2013.

    Google Scholar 

  60. Yousif A, Jamal MA, Raad I. Biofilm-based central line-associated bloodstream infections. Adv Exp Med Biol. 2015;830:157–79.

    PubMed  Google Scholar 

  61. Bauer TT, Torres A, Ferrer R, Heyer CM, Schultze-Werninghaus G, Rasche K. Biofilm formation in endotracheal tubes. Association between pneumonia and the persistence of pathogens. Monaldi Arch Chest Dis. 2002;57(1):84–7.

    CAS  PubMed  Google Scholar 

  62. Nielsen JC, Gerdes JC, Varma N. Infected cardiac-implantable electronic devices: prevention, diagnosis, and treatment. Eur Heart J. 2015;36(37):2484–90.

    PubMed  Google Scholar 

  63. Fong IW. New perspectives of infections in cardiovascular disease. Curr Cardiol Rev. 2009;5(2):87–104.

    PubMed  PubMed Central  Google Scholar 

  64. Paula A, Santos A, Watanabe E, De Andrade D. Clinical update biofilm on artificial pacemaker: fiction or reality? Arq Bras Cardiol. 2011;97(5):e120.

    Google Scholar 

  65. Ajdic D, Zoghbi Y, Gerth D, Panthaki ZJ, Thaller S. The relationship of bacterial biofilms and capsular contracture in breast implants. Aesthet Surg J. 2016;36(3):297–309.

    PubMed  PubMed Central  Google Scholar 

  66. Międzybrodzki R, Borysowski J, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Szufnarowski K, et al. Clinical aspects of phage therapy. Adv Virus Res. 2012;83:73–121.

    PubMed  Google Scholar 

  67. Abedon ST. Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets? FEMS Microbiol Lett. 2016;363

    Google Scholar 

  68. Motlagh AM, Bhattacharjee AS, Goel R. Biofilm control with natural and genetically-modified phages. World J Microbiol Biotechnol. 2016;32(4):67.

    PubMed  Google Scholar 

  69. Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32(11):1146–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chan BK, Abedon ST. Phage therapy pharmacology. Phage cocktails Adv Appl Microbiol. 2012;78:1–23.

    CAS  PubMed  Google Scholar 

  71. Yang SH, Chung J, Mcfarland S, Lee S-W. Assembly of Bacteriophage into functional materials. Chem Rec. 2013;13:43–59.

    CAS  PubMed  Google Scholar 

  72. Pearson HA, Sahukhal GS, Elasri MO, Urban MW. Phage-bacterium war on polymeric surfaces: can surface-anchored bacteriophages eliminate microbial infections? Biomacromolecules. 2013;14(5):1257–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bean JE, Alves DR, Laabei M, Esteban PP, Thet NT, Enright MC, et al. Triggered release of bacteriophage K from agarose/hyaluronan hydrogel matrixes by Staphylococcus aureus virulence factors. Chem Mater. 2014;26(24):7201–8.

    CAS  Google Scholar 

  74. Cao B, Yang M, Mao C. Phage as a genetically modifiable supramacromolecule in chemistry, Materials and Medicine. Acc Chem Res. 2016;49(6):1111–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Henry KA, Arbabi-Ghahroudi M, Scott JK. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol. 2015;6(Article 755):1–18.

    Google Scholar 

  76. Gill JJ, Hyman P. Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol. 2010;11(1):2–14.

    CAS  PubMed  Google Scholar 

  77. Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011;1(2):111–4.

    PubMed  PubMed Central  Google Scholar 

  78. Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013;8(6):769–83.

    CAS  PubMed  Google Scholar 

  79. Abdulamir AS, Jassim SAA, Hafidh RR, Bakar FA. The potential of bacteriophage cocktail in eliminating Methicillin-resistant Staphylococcus aureus biofilms in terms of different extracellular matrices expressed by PIA, ciaA-D and FnBPA genes. Ann Clin Microbiol Antimicrob. 2015;14(1):49.

    PubMed  PubMed Central  Google Scholar 

  80. Sagar SSSS, Kumar R, Kaistha SDSD. Efficacy of phage and ciprofloxacin co-therapy on the formation and eradication of Pseudomonas aeruginosa biofilms. Arab J Sci Eng. 2017;42(1):95–103.

    CAS  Google Scholar 

  81. Nouraldin AAM, Baddour MM, Harfoush RAH, Essa SAM. Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Alexandria J Med. 2015;52(2):99–105.

    Google Scholar 

  82. Chaudhry WN, Concepción-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR. Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. Rozen DE, editor. PLoS One. 2017;12(1):e0168615.

    PubMed  PubMed Central  Google Scholar 

  83. Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol. 2017;101(8):3103–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Pires DP, Oliveira H, Melo LDR, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol. 2016;100(5):2141–51.

    CAS  PubMed  Google Scholar 

  85. Chan BK, Abedon ST. Bacteriophages and their enzymes in biofilm control. Curr Pharm Des. 2015;21(1):85–99.

    CAS  PubMed  Google Scholar 

  86. Gerstmans H, Rodriguez-Rubio L, Lavigne R, Briers Y. From endolysins to Artilysin(R)s: novel enzyme-based approaches to kill drug-resistant bacteria. Biochem Soc Trans. 2016;44(1):123–8.

    CAS  PubMed  Google Scholar 

  87. Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A. 2007;104(27):11197–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pei R, Lamas-Samanamud GR. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl Environ Microbiol. 2014;80(17):5340–8.

    PubMed  PubMed Central  Google Scholar 

  89. Fernández L, González S, Campelo AB, Martínez B, Rodríguez A, García P. Downregulation of autolysin-encoding genes by phage-derived lytic proteins inhibits biofilm formation in Staphylococcus aureus. Antimicrob Agents Chemother. 2017;61(5):e02724–16.

    PubMed  PubMed Central  Google Scholar 

  90. Abouhmad A, Mamo G, Dishisha T, Amin MA, Hatti-Kaul R. T4 lysozyme fused with cellulose-binding module for antimicrobial cellulosic wound dressing materials. J Appl Microbiol. 2016;121(1):115–25.

    CAS  PubMed  Google Scholar 

  91. Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep. 2016;6:26717.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Edgar R, Friedman N, Molshanski-Mor S, Qimron U. Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Appl Environ Microbiol. 2012;78(3):744–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jalasvuori M, Friman V-P, Nieminen A, Bamford JKH, Buckling A. Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids. Biol Lett. 2011;7(6):902–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Harrison E, Wood AJ, Dytham C, Pitchford JW, Truman J, Spiers A, et al. Bacteriophages limit the existence conditions for conjugative plasmids. MBio. 2015;6(3):e00586–15.

    PubMed  PubMed Central  Google Scholar 

  95. Garneau JE, Dupuis M-È, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67–71.

    CAS  Google Scholar 

  96. Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature. 2012;493(7432):429–32.

    PubMed  PubMed Central  Google Scholar 

  97. Palmer KL, Whiteley M. DMS3–42: the secret to CRISPR-dependent biofilm inhibition in Pseudomonas aeruginosa. J Bacteriol. 2011;193(14):3431–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chaudhary K. BacteRiophage EXclusion (BREX): A novel anti-phage mechanism in the arsenal of bacterial defense system. J Cell Physiol. 2017;233(1):57–9.

    PubMed  Google Scholar 

  99. Yosef I, Manor M, Kiro R, Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci USA. 2015;112(23):7267–72.

    CAS  PubMed  Google Scholar 

  100. Hargreaves KR, Kropinski AM, Clokie MRJ. What does the talking?: Quorum sensing signalling genes discovered in a bacteriophage genome. Kaufmann GF, editor. PLoS One. 2014;9(1):e85131.

    PubMed  PubMed Central  Google Scholar 

  101. Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, et al. Communication between viruses guides lysis–lysogeny decisions. Nature. 2017;541(7638):488–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem. 2011;22(10):1879–903.

    CAS  PubMed  Google Scholar 

  103. Mayer O, Jain P, Weisbrod TR, Biro D, Ho L, Jacobs-Sera D, et al. Fluorescent reporter DS6A mycobacteriophages reveal unique variations in infectibility and phage production in mycobacteria. O’Toole GA, editor. J Bacteriol. 2016;198(23):3220–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang D, Coronel-Aguilera CP, Romero PL, Perry L, Minocha U, Rosenfield C, et al. The use of a novel NanoLuc-based reporter phage for the detection of Escherichia coli O157:H7. Sci Rep. 2016;6(1):33235.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Adhya S, Merril CR, Biswas B. Therapeutic and prophylactic applications of bacteriophage components in modern medicine. Cold Spring Harb Perspect Med. 2014;4(1):a012518.

    PubMed  PubMed Central  Google Scholar 

  106. Melo LDR, Veiga P, Cerca N, Kropinski AM, Almeida C, Azeredo J, et al. Development of a phage cocktail to control Proteus mirabilis catheter-associated urinary tract infections. Front Microbiol. 2016;7:1024.

    PubMed  PubMed Central  Google Scholar 

  107. Nzakizwanayo J, Hanin A, Alves DR, McCutcheon B, Dedi C, Salvage J, et al. Bacteriophage can prevent encrustation and blockage of urinary catheters by Proteus mirabilis. Antimicrob Agents Chemother. 2016;60(3):1530–6.

    CAS  PubMed Central  Google Scholar 

  108. Lehman SM, Donlan RM. Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob Agents Chemother. 2015;59(2):1127–37.

    PubMed  PubMed Central  Google Scholar 

  109. Lungren MP, Donlan RM, Kankotia R, Paxton BE, Falk I, Christensen D, et al. Bacteriophage K antimicrobial-lock technique for treatment of Staphylococcus aureus central venous catheter-related infection: a leporine model efficacy analysis. J Vasc Interv Radiol. 2014;25(10):1627–32.

    PubMed  PubMed Central  Google Scholar 

  110. Yilmaz C, Colak M, Yilmaz BC, Ersoz G, Kutateladze M, Gozlugol M. Bacteriophage therapy in implant-related infections an experimental study. J Bone Joint Surg. 2013;95:117–25.

    PubMed  Google Scholar 

  111. Kaur S, Harjai K, Chhibber S. In Vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS One. 2016;11(6):e0157626.

    PubMed  PubMed Central  Google Scholar 

  112. Międzybrodzki R, Fortuna W, Weber-Dąbrowska B, Górski A. A retrospective analysis of changes in inflammatory markers in patients treated with bacterial viruses. Clin Exp Med. 2009;9(4):303–12.

    PubMed  Google Scholar 

  113. Ross A, Ward S, Hyman P. More is better: selecting for broad host range bacteriophages. Front Microbiol. 2016;7:1352.

    PubMed  PubMed Central  Google Scholar 

  114. Mapes AC, Trautner BW, Liao KS, Ramig RF. Development of expanded host range phage active on biofilms of multi-drug resistant Pseudomonas aeruginosa. Bacteriophage. 2016;6(1):e1096995.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Yu P, Mathieu J, Li M, Dai Z, Alvarez PJJ. Isolation of polyvalent bacteriophages by sequential multiple-host approaches. Dozois CM, editor. Appl Environ Microbiol. 2016;82(3):808–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. Phage treatment of human infections. Bacteriophage. 2011;1(2):66–85.

    PubMed  PubMed Central  Google Scholar 

  117. Goodridge LD. Designing phage therapeutics. Curr Pharm Biotechnol. 2010;11(1):15–27.

    CAS  PubMed  Google Scholar 

  118. Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, et al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci. 2017;249:100–33.

    CAS  PubMed  Google Scholar 

  119. Navarro F, Muniesa M. Phages in the human body. Front Microbiol. 2017;8:566.

    PubMed  PubMed Central  Google Scholar 

  120. Hodyra-Stefaniak K, Miernikiewicz P, Drapała J, Drab M, Jończyk-Matysiak E, Lecion D, et al. Mammalian Host-Versus-Phage immune response determines phage fate in vivo. Sci Rep. 2015;5:14802.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Verbeken G, Huys I, Pirnay J-P, Jennes S, Chanishvili N, Scheres J, et al. Taking bacteriophage therapy seriously: a moral argument. Biomed Res Int. 2014;2014:621316.

    PubMed  PubMed Central  Google Scholar 

  122. Brussow H. What is needed for phage therapy to become a reality in Western medicine? Virology. 2012;434(2):138–42.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Research grant from Chhatrapati Shahu Ji Maharaj University supports the work on bacteriophage control that forms the basis of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaistha, S.D., Umrao, P.D., Katiyar, R., Deshpande, N. (2019). Bacteriophages as Biocontrol Agents of Biofilm Infections Associated with Abiotic Prosthetic Devices. In: Duscher, D., Shiffman, M.A. (eds) Regenerative Medicine and Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19958-6_9

Download citation

Publish with us

Policies and ethics