Skip to main content

Stem Cell Differentiation Directed by Material and Mechanical Cues

  • Chapter
  • First Online:
Regenerative Medicine and Plastic Surgery

Abstract

Stem cells play a crucial role in regenerative processes. They are heavily influenced by their microenvironment and, depending on the external signal, stem cells self-renew and differentiate toward specific lineages. It is critical to understand the diverse mechanical and material cues that induce stem cell behavior to harness these changes for tissue engineering applications. As such, significant advances have been made in regenerative approaches to breast reconstruction. In this review, we will discuss the role of extracellular signals in guiding stem cell differentiation and stress the role of material and mechanical cues that influence mammary adipose and epithelial tissues in the context of breast reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Visscher LE, Cheng M, Chhaya M, Hintz ML, Schantz JT, Tran P, Ung O, Wong C, Hutmacher DW. Breast augmentation and reconstruction from a regenerative medicine point of view: state of the art and future perspectives. Tissue Eng Part B Rev. 2017;23(3):281–93.

    Article  PubMed  Google Scholar 

  2. Vidi PA, Bissell MJ, Lelievre SA. Three-dimensional culture of human breast epithelial cells: the how and the why. Methods Mol Biol. 2013;945:193–219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100(9):1249–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reilly GC, Engler AJ. Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech. 2010;43(1):55–62.

    Article  PubMed  Google Scholar 

  5. Sun Y, Chen CS, Fu J. Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys. 2012;41:519–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ibrahim AMS, Koolen PGL, Ashraf AA, Kim K, Mureau MAM, Lee BT, Lin SJ. Acellular dermal matrix in reconstructive breast surgery. Plast Reconstr Surg Glob Open. 2015;3(4):e381.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xu Y, Zhang G, Chang Y, Oiu YX, Wang C. The preparation of acellular dermal matrices by freeze-thawing and ultrasonication process and the evaluation of its antigenicity. Cell Biochem Biophys. 2015;73(1):2733.

    Article  CAS  Google Scholar 

  8. Eckhard U, Huesgen PF, Brandstetter H, Overall CM. Proteomic protease specificity profiling of clostridial collagenases reveal their intrinsic nature as dedicated degraders of collagen. J Proteomics. 2014;100:102–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nilsen TJ, Dasgupta A, Huang YC, Wilson H, Chnari E. Do processing methods make a difference in acellular dermal matrix properties? Aesthet Surg J. 2016;36(Suppl 2):S7–S22.

    Article  PubMed  Google Scholar 

  10. Ho G, Nguyen TJ, Shahabi A, Hwang BH, Chan LS, Wong AK. A systematic review and meta-analysis of complications associated with acellular dermal matrix-assisted breast reconstruction. Ann Plast Surg. 2012;68(4):346–56.

    Article  CAS  PubMed  Google Scholar 

  11. Nahabedian MY. Acellular dermal matrices in primary breast reconstruction: principles, concepts, and indications. Plast Reconstr Surg. 2012;130(5 Suppl 2):44S–53S.

    Article  CAS  PubMed  Google Scholar 

  12. McCarthy CM, Lee CN, Halvorson EG, Riedel E, Pusic AL, Mehrara BJ, Disa JJ. The use of acellular dermal matrices in two-stage expander/implant reconstruction: a multicenter, blinded, randomized controlled trial. Plast Reconstr Surg. 2012;130(5 Suppl 2):57S–66S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47(4):1394–400.

    Article  CAS  PubMed  Google Scholar 

  14. Ramiao NG, Martins PS, Rynkevic R, Fernandes AA, Barroso M, Santos DC. Biomechanical properties of breast tissue, a state-of-the-art review. Biomech Model Mechanobiol. 2016;15(5):1307–23.

    Article  PubMed  Google Scholar 

  15. Zamir EA, Srinivasan V, Perucchio R, Taber LA. Mechanical asymmetry in the embryonic chick heart during looping. Ann Biomed Eng. 2003;31(11):1327–36.

    Article  PubMed  Google Scholar 

  16. Krieg M, Arboleda-Estudillo Y, Puech PH, Kafer J, Graner F, Muller DJ, Heisenberg CP. Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol. 2008;10(4):429–36.

    Article  CAS  PubMed  Google Scholar 

  17. Rozario T, Dzamba B, Weber GF, Davidson LA, DeSimone DW. The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. Dev Biol. 2009;327(2):386–98.

    Article  CAS  PubMed  Google Scholar 

  18. Schedin P, Keely PJ. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb Perspect Biol. 2011;3(1):a003228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.

    Article  CAS  PubMed  Google Scholar 

  20. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage. Dev Cell. 2004;6(4):483–95.

    Article  CAS  PubMed  Google Scholar 

  21. Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006;22:287–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hebner C, Weaver VM, Debnath J. Modeling morphogenesis and oncogenesis in three-dimensional breast epithelial cultures. Annu Rev Pathol. 2008;3:313–39.

    Article  CAS  PubMed  Google Scholar 

  23. Wozniak MA, Desai R, Solski PA, Der CJ, Keely PJ. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol. 2003;163(3):583–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chandler EM, Seo BR, Califano JP, Andresen Eguiluz RC, Lee JS, Yoon CJ, Tims DT, Wang JX, Cheng L, Mohanan S, Buckley MR, Cohen I, Nikitin AY, Williams RM, Gourdon D, Reinhart-King CA, Fischbach C. Implanted adipose progenitor cells as physicochemical regulators of breast cancer. Proc Natl Acad Sci U S A. 2012;109(25):9786–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–54.

    Article  CAS  PubMed  Google Scholar 

  26. Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009;9(2):108–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY, Speicher DW, Sanger JW, Sanger JM, Discher DE. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci. 2008;121(22):3794–802.

    Article  CAS  PubMed  Google Scholar 

  28. Ishihara S, Inman DR, Li WJ, Ponik SM, Keely P. Mechano-signal transduction in mesenchymal stem cells induces prosaposin secretion to drive the proliferation of breast cancer cells. Cancer Res. 2017;77(22):6179–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sonam S, Sathe SR, Yim EK, Sheetz MP, Lim CT. Cell contractility arising from topography and shear flow determines human mesenchymal stem cell fate. Sci Rep. 2016;6:20415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kshitiz, Park J, Kim P, Helen W, Engler AJ, Levchenko A, Kim DH. Control of stem cell fate and function by engineering physical microenvironments. Integr Biol (Camb). 2012;4(9):1008–18.

    Article  CAS  Google Scholar 

  31. Xu R, Boudreau A, Bissell MJ. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev. 2009;28(1–2):167–76.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhu J, Xiong G, Trinkle C, Xu R. Integrated extracellular matrix signaling in mammary gland development and breast cancer progression. Histol Histopathol. 2014;29(9):1083–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Song W, Lu H, Kawazoe N, Chen G. Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns. Langmuir. 2011;27(10):6155–62.

    Article  CAS  PubMed  Google Scholar 

  34. Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A. 2010;107(11):4872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Burridge K. Focal adhesions: a personal perspective on a half century of progress. FEBS J. 2017;284(20):3355–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwartz MA. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol. 2010;2(12):a005066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, Bissell MJ, Petersen OW. Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol. 2007;177(1):87–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Warburton MJ, Mitchell D, Ormerod EJ, Rudland P. Distribution of myoepithelial cells and basement membrane proteins in the resting pregnant lactating, and involution rat mammary gland. J Histochem Cytochem. 1982;30(7):667–76.

    Article  CAS  PubMed  Google Scholar 

  39. Woodward TL, Mienaltowski AS, Modi RR, Bennett JM, Haslam SZ. Fibronectin and the a5b1 integrin are under developmental and ovarian steroid regulation in the normal mouse mammary gland. Endocrinologie. 2001;142(7):3214–22.

    Article  CAS  Google Scholar 

  40. Haslam SZ, Woodward TL. Reciprocal regulation of extracellular matrix proteins and ovarian steroid activity in the mammary gland. Breast Cancer Res. 2001;3(6):365–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guarnieri D, Battista S, Borzacchiello A, Mayol L, De Rosa E, Keene DR, Muscariello L, Barbarisi A, Netti PA. Effects of fibronectin and laminin on structural, mechanical and transport properties of 3D collageneous network. J Mater Sci Mater Med. 2007;18(2):245–53.

    Article  CAS  PubMed  Google Scholar 

  42. Fogerty FJ, Akiyama SK, Yamada KM, Mosher DF. Inhibition of binding of fibronectin to matrix assembly sites by anti-integrin (a5b1) antibodies. J Cell Biol. 1990;111(2):699–708.

    Article  CAS  PubMed  Google Scholar 

  43. Mao Y, Schwarzbauer JE. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 2005;24(6):389–99.

    Article  CAS  PubMed  Google Scholar 

  44. Liao HT, Marra KG, Rubin JP. Application of platelet-rich plasma and platelet-rich fibrin in fat grafting: basic science and literature review. Tissue Eng Part B Rev. 2014;20(4):267–76.

    Article  CAS  PubMed  Google Scholar 

  45. Rigotti G, Marchi A, Galie M, Baroni G, Benati D, Krampera M, Pasini A, Sbarbati A. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg. 2007;119(5):1409–22.

    Article  CAS  PubMed  Google Scholar 

  46. Mashiko T, Yoshimura K. How does fat survive and remodel after grafting? Clin Plast Surg. 2015;42(2):181–90.

    Article  PubMed  Google Scholar 

  47. Mineda K, Kuno S, Kato H, Kinoshita K, Doi K, Hashimoto I, Nakanishi H, Yoshimura K. Chronic inflammation and progressive calcification as a result of fat necrosis: the worst outcome in fat grafting. Plast Reconstr Surg. 2014;133(5):1064–72.

    Article  CAS  PubMed  Google Scholar 

  48. Hsueh YS, Chen YS, Tai HC, Ondrej M, Chao SC, Chen YY, Shih Y, Lin JF, Shieh MJ, Lin FH. Laminin-alginate beads as preadipocyte carriers to enhanve adipogenesis in vitro and in vivo. Tissue Eng Part A. 2016;23(5–6):185–94.

    PubMed  Google Scholar 

  49. Banyard DA, Bourgeois JM, Widgerow AD, Evans GR. Regenerative biomaterials: a review. Plast Reconstr Surg. 2015;135(6):1740–8.

    Article  CAS  PubMed  Google Scholar 

  50. Combellack EJ, Jessop ZM, Naderi N, Griffin M, Dobbs T, Ibrahim A, Evans S, Burnell S, Doak SH, Whitaker IS. Adipose regeneration and implications for breast reconstruction: update and the future. Gland Surg. 2016;5(2):227–41.

    PubMed  PubMed Central  Google Scholar 

  51. Van Nieuwenhove I, Tytgat L, Ryx M, Blondeel P, Stillaert F, Thienpont H, Ottevaere H, Dubruel P, Van Vlierberghe S. Soft tissue fillers for adipose tissue regeneration: from hydrogel development toward clinical applications. Acta Biomater. 2017;63:37–49.

    Article  PubMed  CAS  Google Scholar 

  52. Puskas JE, Luebbers MT. Breast implants: the good, the bad and the ugly. Can nanotechnology improve implants? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(2):153–68.

    Article  PubMed  Google Scholar 

  53. Campbell JJ, Watson CJ. Three-dimensional culture models of mammary gland. Organogenesis. 2009;5(2):43–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hillreiner M, Muller NI, Koch HM, Schmautz C, Kuster B, Pfaffl MW, Kliem H. Establishment of a 3D cell culture model of primary bovine mammary epithelial cells extracted from fresh milk. In Vitro Cell Dev Biol Anim. 2017;53(8):706–20.

    Article  CAS  PubMed  Google Scholar 

  55. Hilmarsdottir B, Briem E, Halldorsson S, Kricker J, Ingthorsson S, Gustafsdottir S, Mælandsmo GM, Magnusson MK, Gudjonsson T. Inhibition of PTP1B disrupts cell-cell adhesion and induces anoikis in breast epithelial cells. Cell Death Dis. 2017;8(5):e2769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ingthorsson S, Briem E, Bergthorsson JT, Gudjonsson T. Epithelial plasticity during human breast morphogenesis and cancer progression. J Mammary Gland Biol Neoplasia. 2016;21(3–4):139–48.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Speroni L, Sweeney MF, Sonnenschein C, Soto AM. A hormone-responsive 3D culture model of the human mammary gland epithelium. J Vis Exp. 2016;108:e53098.

    Google Scholar 

  58. Sokol ES, Miller DH, Breggia A, Spencer KC, Arendt LM, Gupta PB. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Res. 2016;18(1):19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.

    Article  CAS  PubMed  Google Scholar 

  60. Thomas DJ. 3D bioprinting as a solution for engineering the nipple areola complex for breast cancer reconstruction. Int J Surg. 2017;41:14–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Granick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moore, C.A., Condé-Green, A., Rameshwar, P., Granick, M.S. (2019). Stem Cell Differentiation Directed by Material and Mechanical Cues. In: Duscher, D., Shiffman, M.A. (eds) Regenerative Medicine and Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19958-6_7

Download citation

Publish with us

Policies and ethics