Skip to main content

Minimizing Branching Vertices in Distance-Preserving Subgraphs

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11532))

Included in the following conference series:

  • 642 Accesses

Abstract

It is \(\textsf {NP}\)-hard to determine the minimum number of branching vertices needed in a single-source distance-preserving subgraph of an undirected graph. We show that this problem can be solved in polynomial time if the input graph is an interval graph.

In earlier work, it was shown that every interval graph with k terminal vertices admits an all-pairs distance-preserving subgraph with \(O(k\log k)\) branching vertices [13]. We extend this result to bi-interval graphs; these are graphs that can be expressed as the strong product of two interval graphs. We present a polynomial time algorithm that takes a bi-interval graph with k terminal vertices as input, and outputs an all-pairs distance-preserving subgraph of it with \(O(k^2)\) branching vertices. This bound is tight.

K. Gajjar—Supported by a DAE scholarship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The container cannot be left at the warehouse/storage unit of port H itself beyond a certain limited period of time.

  2. 2.

    The boxicity of a graph is the minimum dimension in which a given graph can be represented as an intersection graph of axis-parallel boxes.

  3. 3.

    Every interval graph is a bi-interval graph.

  4. 4.

    Note that when restricted to a fixed row (or a fixed column), a bi-interval graph is simply an interval graph.

  5. 5.

    Anti-parallel paths are two greedy shortest paths in opposite directions. We do not consider southeast or northwest paths because southeast is anti-parallel to northwest, and southwest is anti-parallel to northeast, and there does not seem to be any straightforward method to get a handle on the number of branching vertices in terms of k by using anti-parallel paths (see [14, Section 3.7] for a more thorough explanation of this).

References

  1. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: New constructions of (\(\alpha \), \(\beta \))-spanners and purely additive spanners. In: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms. pp. 672–681. Society for Industrial and Applied Mathematics (2005)

    Google Scholar 

  2. Bodwin, G.: Linear size distance preservers. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 600–615. Society for Industrial and Applied Mathematics (2017)

    Google Scholar 

  3. Bollobás, B., Coppersmith, D., Elkin, M.: Sparse distance preservers and additive spanners. SIAM J. Discrete Math. 19(4), 1029–1055 (2005)

    Article  MathSciNet  Google Scholar 

  4. Charikar, M., Leighton, F.T., Li, S., Moitra, A.: Vertex sparsifiers and abstract rounding algorithms. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp. 265–274, October 2010. https://doi.org/10.1109/FOCS.2010.32

  5. Chepoi, V.: Distance-preserving subgraphs of Johnson graphs. Combinatorica 37(6), 1–17 (2015)

    MathSciNet  Google Scholar 

  6. Coppersmith, D., Elkin, M.: Sparse sourcewise and pairwise distance preservers. SIAM J. Discrete Math. 20(2), 463–501 (2006)

    Article  MathSciNet  Google Scholar 

  7. Däubel, K., Disser, Y., Klimm, M., Mütze, T., Smolny, F.: Distance-preserving graph contractions. CoRR abs/1705.04544 (2017). http://arxiv.org/abs/1705.04544

  8. Djoković, D.Ž.: Distance-preserving subgraphs of hypercubes. J. Comb. Theory Ser. B 14(3), 263–267 (1973)

    Article  MathSciNet  Google Scholar 

  9. Englert, M., Gupta, A., Krauthgamer, R., Rcke, H., Talgam-Cohen, I., Talwar, K.: Vertex sparsifiers: new results from old techniques. SIAM J. Comput. 43(4), 1239–1262 (2014). https://doi.org/10.1137/130908440

    Article  MathSciNet  MATH  Google Scholar 

  10. Feder, T., Motwani, R.: Clique partitions, graph compression and speeding-up algorithms. J. Comput. System Sci. 51(2), 261–272 (1995). https://doi.org/10.1006/jcss.1995.1065

    Article  MathSciNet  MATH  Google Scholar 

  11. Filtser, A.: Steiner point removal with distortion \(O (\log k)\). In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1361–1373. Society for Industrial and Applied Mathematics (2018)

    Google Scholar 

  12. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theor. Comput. Sci. 10(2), 111–121 (1980)

    Article  MathSciNet  Google Scholar 

  13. Gajjar, K., Radhakrishnan, J.: Distance-preserving Subgraphs of Interval Graphs. In: 25th Annual European Symposium on Algorithms (ESA 2017), Leibniz International Proceedings in Informatics (LIPIcs), vol. 87, pp. 39:1–39:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2017). https://doi.org/10.4230/LIPIcs.ESA.2017.39. http://drops.dagstuhl.de/opus/volltexte/2017/7879. http://arxiv.org/abs/1708.03081

  14. Gajjar, K., Radhakrishnan, J.: Minimizing branching vertices in distance-preserving subgraphs. CoRR abs/1810.11656 (2018). http://arxiv.org/abs/1810.11656

  15. Goranci, G., Henzinger, M., Peng, P.: Improved guarantees for vertex sparsification in planar graphs. arXiv preprint arXiv:1702.01136 (2017)

  16. Gupta, A.: Steiner points in tree metrics don’t (really) help. In: Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pp. 220–227. Society for Industrial and Applied Mathematics (2001)

    Google Scholar 

  17. Kamma, L., Krauthgamer, R., Nguyên, H.L.: Cutting corners cheaply, or how to remove steiner points. SIAM J. Comput. 44(4), 975–995 (2015)

    Article  MathSciNet  Google Scholar 

  18. Krauthgamer, R., Nguyên, H., Zondiner, T.: Preserving terminal distances using minors. SIAM J. Discrete Math. 28(1), 127–141 (2014). https://doi.org/10.1137/120888843

    Article  MathSciNet  MATH  Google Scholar 

  19. Krauthgamer, R., Zondiner, T.: Preserving terminal distances using minors. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 594–605. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31594-7_50

    Chapter  Google Scholar 

  20. LaPaugh, A.S., Rivest, R.L.: The subgraph homeomorphism problem. J. Comput. Syst. Sci. 20(2), 133–149 (1980)

    Article  MathSciNet  Google Scholar 

  21. Leighton, F.T., Moitra, A.: Extensions and limits to vertex sparsification. In: Proceedings of the Forty-second ACM Symposium on Theory of Computing, STOC 2010, pp. 47–56. ACM, New York (2010). https://doi.org/10.1145/1806689.1806698. https://doi.acm.org/10.1145/1806689.1806698

  22. Nussbaum, R., Esfahanian, A.H., Tan, P.N.: Clustering social networks using distance-preserving subgraphs. In: Özyer, T., Rokne, J., Wagner, G., Reuser, A. (eds.) The Influence of Technology on Social Network Analysis and Mining. LNSN, vol. 6, pp. 331–349. Springer, Vienna (2013). https://doi.org/10.1007/978-3-7091-1346-2_14

    Chapter  Google Scholar 

  23. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989). https://doi.org/10.1002/jgt.3190130114

    Article  MathSciNet  MATH  Google Scholar 

  24. Sadri, A., Salim, F.D., Ren, Y., Zameni, M., Chan, J., Sellis, T.: Shrink: distance preserving graph compression. Inf. Syst. 69, 180–193 (2017)

    Article  Google Scholar 

  25. Spielman, D.A., Teng, S.H.: Spectral sparsification of graphs. SIAM J. Comput. 40(4), 981–1025 (2011)

    Article  MathSciNet  Google Scholar 

  26. Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pp. 802–809. Society for Industrial and Applied Mathematics (2006)

    Google Scholar 

  27. Yan, D., Cheng, J., Ng, W., Liu, S.: Finding distance-preserving subgraphs in large road networks. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE), pp. 625–636. IEEE (2013)

    Google Scholar 

Download references

Acknowledgment

We thank Suhail Sherif for the “unique diagonal paths” idea [14, Section 3.6] that eventually led to our proof of Theorem 2(b). We are also grateful to the anonymous reviewers of this paper for their helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kshitij Gajjar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gajjar, K., Radhakrishnan, J. (2019). Minimizing Branching Vertices in Distance-Preserving Subgraphs. In: van Bevern, R., Kucherov, G. (eds) Computer Science – Theory and Applications. CSR 2019. Lecture Notes in Computer Science(), vol 11532. Springer, Cham. https://doi.org/10.1007/978-3-030-19955-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19955-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19954-8

  • Online ISBN: 978-3-030-19955-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics