Skip to main content

Engineering Interfaces at the Nanoscale

  • Chapter
  • First Online:
Women in Nanotechnology

Part of the book series: Women in Engineering and Science ((WES))

  • 579 Accesses

Abstract

 From heat dissipation in electronic devices to the heating of our homes, thermal transport is ubiquitous in today’s technology. In the past few decades, a drive to miniaturize devices, in some cases to length scales smaller than the intrinsic mean free paths of the energy carriers, while concurrently increasing efficiency, has pushed thermal management to a primary consideration in the design and implementation of technological devices. Solid-solid interfaces serve as primary scattering sites for thermal carriers and can contribute significantly to the overall thermal resistance of the device. Controlling the interfacial resistance remains a top priority for thermal engineers, but this requires an understanding of the fundamental physics behind thermal carriers and mechanisms which can influence interfacial transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archilla, J. F. R., Coehlo, S. M. M., Auret, F. D., Nyamhere, C., Dubinko, V. I., & Hizhnyakov, V. (2013). Experimental observation of intrinsic localized modes in Germanium. Springer Series in Materials Science, 22, 343–362.

    Google Scholar 

  • Bauer, M., Pham, Q., Saltonstall, C., & Norris, P. (2014). Thermal conductivity of vertically aligned carbon nanotube arrays: Growth conditions and tube inhomogeneity. Applied Physics Letters, 105, 151909.

    Article  Google Scholar 

  • Beechem, T., & Hopkins, P. E. (2009). Journal of Applied Physics, (12), 124301.

    Google Scholar 

  • Beechem, T., Graham, S., Hopkins, P., & Norris, P. (2007). Role of interface disorder on thermal boundary conductance using a virtual crystal approach. Applied Physics Letters, 90, 54104.

    Article  Google Scholar 

  • Beechem, T., Duda, J., Hopkins, P., & Norris, P. (2010). Contribution of optical phonons to thermal boundary conductances. Applied Physics Letters, 97, 2008–2011.

    Article  Google Scholar 

  • Cheaito, R., Gaskins, J., Caplan, M., Donovan, B., Foley, B., Giri, A., Duda, J., Szwejkowski, C., Constantin, C., Brown-Shaklee, H., Ihlefeld, J., & Hopkins, P. (2015). Thermal boundary conductance accumulation and interfacial phonon transmission: Measurements and theory. Physical Review B, 91, 035432.

    Article  Google Scholar 

  • Chen, G. (1996). Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. ASME Journal of Heat Transfer, 118, 539–545.

    Article  Google Scholar 

  • Choi, C., & Roberts, N. (2015). Contributions of mass and bond energy difference and interface defects on thermal boundary conductance. AIP Advances, 5, 097160.

    Article  Google Scholar 

  • Cooper, M., Mikic, B., & Yovanovich, M. (1969). Thermal contact conductance. International Journal of Heat and Mass Transfer, 12, 279–300.

    Article  Google Scholar 

  • Davies, M., Heisenberg, W. K., & Rutherford, E. (1970). Peter Joseph Wilhem Debye, 1884–1966. Biographical Memories of Fellows of the Royal Society, 16.

    Google Scholar 

  • Debye, P. (1912). Zur Theorie der spezifischen Warmen. Annalen der Physik, 344, 789–839.

    Article  MATH  Google Scholar 

  • Duda, J. C., & Hopkins, P. E. (2012). Systematically controlling Kaptiza conductance via chemical etching. Applied Physics Letters, 100, 111602.

    Article  Google Scholar 

  • Duda, J., Hopkins, P., Smoyer, J., Bauer, M., English, T., Saltonstall, C., & Norris, P. (2010). On the assumption of detailed balance in prediction of diffusive transmission probability during interfacial transport. Nanoscale and Microscale Thermophysical Engineering, 14, 21–33.

    Article  Google Scholar 

  • Duda, J., Norris, P., & Hopkins, P. (2011). On the linear temperature dependence of phonon thermal boundary conductance in the classical limit. Journal of Heat Transfer, 133, 074501.

    Article  Google Scholar 

  • Duda, J., Yang, C.-Y., Foley, B., Cheaito, R., Medlin, D., Jones, R., & Hopkins, P. (2013). Influence of interfacial properties on thermal transport at gold:silicon contacts. Applied Physics Letters, 102, 081902.

    Article  Google Scholar 

  • English, T., Duda, J., Smoyer, J., Jordan, D., Norris, P., & Zhigilei, L. (2012). Enhancing and tuning phonon transport at vibrationally mismatched solid-solid interfaces. Physical Review B, 85, 035438.

    Article  Google Scholar 

  • Foley, B., Hernandez, S., Duda, J., Robinson, J., Walton, S., & Hopkins, P. (2015). Modifying surface energy of graphene via plasma-based chemical functionalization to tune thermal and electrical transport at metal interfaces. Nano Letters, 15, 4876–4882.

    Article  Google Scholar 

  • Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K., Ikuta, T., Abe, H., & Shimizu, T. (2005). Measuring the thermal conductivity of a single carbon nanotube. Physical Review Letters, 95, 065502.

    Article  Google Scholar 

  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarottie, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., Fabris, S., Fratesi, G., de Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Somgunov, A., Umari, P., & Wentzcovitch, M. (2009). Quantum Espresso: A modular and open-source software for quantum simulations of materials. Journal of Physics: Condensed Matter, 21, 395502.

    Google Scholar 

  • Hohensee, G., Wilson, R., & Cahill, D. (2015). Thermal conductance of metal-diamond interfaces at high pressure. Nature Communications, 6, 1–9.

    Article  Google Scholar 

  • Hopkins, P. (2013). Thermal transport across solid interfaces with nanoscale imperfections: Effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. ISRN Mechanical Engineering, 2013, 1–19.

    Article  Google Scholar 

  • Hopkins, P., & Norris, P. M. (2009). Relative contributions of inelastic and elastic diffuse phonon scattering to thermal boundary conductance across solid interfaces. Journal of Heat Transfer, 131(2), 22402.

    Article  Google Scholar 

  • Hopkins, P., Salaway, R., Stevens, R., & Norris, P. (2007). Temperature dependent thermal boundary conductance at Al/Al2O3 and Pt/Al2O3 interfaces. International Journal of Thermophysics, 28, 947–957.

    Article  Google Scholar 

  • Hopkins, P., Norris, P., Stevens, R., Beechem, T., & Graham, S. (2008). Influence of interfacial mixing on thermal boundary conductance across a Chromium/Silicon interface. Journal of Heat Transfer, 130, 062402.

    Article  Google Scholar 

  • Hopkins, P., Phinney, L. M., Serrano, J. R., & Beechem, T. E. (2010). Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces. Physical Review B, 82, 085307.

    Article  Google Scholar 

  • Hsieh, W.-P., Lyons, A., Pop, E., Keblinski, P., & Cahill, D. (2011). Pressure tuning of the thermal conductance of weak interfaces. Physical Review B, 84, 1–5.

    Article  Google Scholar 

  • Killat, N., Montes, M., Pomeroy, J., Paskova, T., Evans, K., Leach, J., Li, X., Ozgur, U., Morkoc, H., Chabak, K., Crespo, A., Gillespie, J., Fitch, R., Kossler, M., Walker, D., Trejo, M., Via, G., Blevins, J., & Kuball, M. (2012). IEEE Electron Device Letters, 33, 366–368.

    Article  Google Scholar 

  • Kish, L. (2002). End of Moore’s law: Thermal (noise) death of integration in micro and nano electronics. Physics Letters A, 305, 144–149.

    Article  Google Scholar 

  • Kittel, C. (2001). Introduction to solid state physics. New York: Wiley.

    MATH  Google Scholar 

  • Krishnan, S., Garimella, S., & Mahajan, R. (2007). Towards a thermal Moore’s law. IEEE Transactions on Advanced Packaging, 30, 462–474.

    Article  Google Scholar 

  • Kuball, M., Rajasingam, S., Sarua, A., Uren, M., Martin, T., Hughes, B., Hilton, K., & Balmer, R. (2003). Applied Physics Letters, 82, 124–126.

    Article  Google Scholar 

  • Lambrechts, W., Sinha, S., Abdallah, J., & Prinsloo, J. (2018). Extending Moore’s Law through advanced semiconductor design and processing techniques. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Larkin, L. S., Redding, M. R., Le, N. Q., & Norris, P. M. (2016). Temperature dependent thermal boundary conductance at metal/indium-based III-V semiconductor interfaces. Journal of Heat Transfer, 139, 3.

    Article  Google Scholar 

  • Lee, E., & Luo, T. (2017). The role of optical phonons in intermediate layer-mediated thermal transport across solid interfaces. Physical Chemistry Chemical Physics, 19, 18407–18415.

    Article  Google Scholar 

  • Li, X., & Yang, R. (2012). Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces. Physical Review B, 24, 155302.

    Google Scholar 

  • Liang, X.-G., & Sun, L. (2012). Interface structure influence on thermal resistance across double-layered nanofilms. Microscale Thermophysical Engineering, 9, 295–304.

    Article  Google Scholar 

  • Liang, Z., & Tsai, H.-L. (2012). Reduction of solid-solid thermal boundary resistance by inserting an interlayer. International Journal of Heat and Mass Transfer, 55, 2999–3007.

    Article  Google Scholar 

  • Losego, M. D., Grady, M. E., Sottos, N. R., Cahill, D. G., & Braun, P. V. (2012). Effects of chemical bonding on heat transport across interfaces. Nature Materials, 11(6), 502–506.

    Article  Google Scholar 

  • Lyeo, H.-K., & Cahill, D. (2006). Thermal conductance of interfaces between highly dissimilar materials. Physical Review B, 73, 144391.

    Article  Google Scholar 

  • Mahan, G., & Claro, F. (1988). Nonlocal theory of thermal conductivity. Physical Review B, 38, 1963–1969.

    Article  Google Scholar 

  • Monachon, C., & Weber, L. (2013). Influence of diamond surface termination on thermal boundary conductance between Al and diamond. Journal of Applied Physics, 113, 183504.

    Article  Google Scholar 

  • Monachon, C., Schusteritsch, G., Kaxiras, E., & Weber, L. (2014). Qualitative link between work of adhesion and thermal conductance of metal/diamond. Journal of Applied Physics, 115, 123509.

    Article  Google Scholar 

  • Monachon, C., Weber, L., & Dames, C. (2016). Thermal boundary conductance: A materials science perspective. Annual Review of Material Research, 8, 1–31.

    Google Scholar 

  • Moore, G. (1965). Cramming more components into integrated circuits. Electronics, 38, 114–117.

    Google Scholar 

  • Moore, G. (2003). No exponential is forever, but forever can be delayed. IEEE International Solid-State Circuits Conference Proceedings, 1, 20–23.

    Article  Google Scholar 

  • Norris, P., Le, N., & Baker, C. (2013). Tuning phonon transport: From interfaces to nanostructures. Journal of Heat Transfer, 135, 061604.

    Article  Google Scholar 

  • O’Brien, P.J., Shenogin, S., Liu, J., Chow, P.K., Laurencin, D., Mutin, P.H., Yamaguchi, M., Keblinski, P., & Ramanath, G. (2013). Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers. Nature Materials, 12(2), 118–122.

    Google Scholar 

  • Penn Engineering. (2017). ENIAC at Penn Engineering. Retrieved from www.seas.upenn.edu/about/history-heritage/eniac/.

  • Pettersson, S., & Mahan, G. (1990). Theory of thermal boundary resistance between dissimilar lattices. Physical Review B, 42, 7386–7390.

    Article  Google Scholar 

  • Pham, Q., Larkin, L., Lisboa, C., Saltonstall, C., Qui, L., Schuler, J., Rupert, T., & Norris, P. (2017). Effect of growth temperature on the synthesis of carbon nanotube arrays and amorphous carbon for thermal applications. Physica Status Solidi A, 214, 1600852.

    Article  Google Scholar 

  • Polanco, C., Rastgarkafshgarkolaei, R., Zhang, J., Le, N., Norris, P., Hopkins, P., & Ghosh, A. (2015). Role of crystal structure and junction morphology on interface thermal conductance. Physical Review B, 92, 144302.

    Article  Google Scholar 

  • Polanco, C. A., Rastgarkafshgarkolaei, R., Zhang, J., Le, N. Q., Norris, P. M., & Ghosh, A. W. (2017). Design rules for interfacial thermal conductance: Building better bridges. Physical Review B, 95, 195303.

    Article  Google Scholar 

  • Pop, E. (2010). Energy dissipation and transport in nanoscale devices. Nano Research, 3, 147–169.

    Article  Google Scholar 

  • Pop, E., & Goodson, K. (2006). Thermal phenomena in nanoscale transistors. Journal of Electronic Packaging, 128, 102–108.

    Article  Google Scholar 

  • Pop, E., Mann, D., Wang, Q., Goodson, K., & Dai, H. (2006a). Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Letters, 6, 96–100.

    Article  Google Scholar 

  • Pop, E., Sinha, S., & Goodson, K. (2006b). Heat generation and transport in nanometer-scale transistors. Proceedings of IEEE, 94, 1587–1601.

    Article  Google Scholar 

  • Qui, L., Scheider, K., Radwan, S. A., Larkin, L., Saltonstall, C., Feng, Y., Zhang, X., & Norris, P. (2017). Thermal transport barrier in carbon nanotube array nano-thermal interface materials. Carbon, 120, 128–136.

    Article  Google Scholar 

  • Reddy, P., Castelino, K., & Majumdar, A. (2005). Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion. Applied Physics Letters, 87, 211908.

    Article  Google Scholar 

  • Rowlette, J., Pop, E., Sinha, S., Panzer, M., & Goodson, K. (2005). Thermal simulation techniques for nanoscale transistors. In IEEE ACM International Conference on Computer-Aided Design, pp. 225–228.

    Google Scholar 

  • Saaskilahti, K., Oksanen, J., Tulkki, J., & Volz, S. (2014). Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces. Physical Review B, 90, 134312.

    Article  Google Scholar 

  • Sarua, A., Ji, H., Hilton, K. P., Wallis, D. J., Uren, M. J., Martin, T., & Kuball, M. (2007). Thermal boundary resistance between GaN and substrate in AlGaN/GaN electronic devices. IEEE Transactions on Electron Devices, 54(12), 3152–3158.

    Article  Google Scholar 

  • Sarvar, F., Whalley, D., & Conway, P. (2006). Thermal interface materials—A review of the state of the art. In Proceedings of Electronics System Integration Technology Conference, pp. 1292–1302

    Google Scholar 

  • Shen, M., Evans, W., Cahill, D., & Keblinski, P. (2011). Bonding and pressure-tuneable interfacial thermal conductance. Physical Review B, 84, 1–6.

    Google Scholar 

  • Smoyer, J. L. (2015). Local modification to phononic properties at solid-solid interfaces: Effects on thermal transport. PhD Thesis, University of Virginia.

    Google Scholar 

  • Stevens, R. J., Smith, A. N., & Norris, P. M. (2005). Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique. Journal of Heat Transfer, 127, 315–322.

    Article  Google Scholar 

  • Stevens, R., Zhigilei, L., & Norris, P. (2007). Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: Nonequilibrium molecular dynamic simulations. International Journal of Heat and Mass Transfer, 50, 3977–3989.

    Article  MATH  Google Scholar 

  • Stoner, R., & Maris, H. (1993). Kapitza conductance and heat-flow between solids at temperatures from 50 to 300 K. Physical Review B, 48, 16373–16378.

    Article  Google Scholar 

  • Swartz, E., & Pohl, R. O. (1989). Thermal boundary resistance. Review of Modern Physics, 61(3), 605.

    Article  Google Scholar 

  • Twu, C.-J., & Ho, J.-R. (2003). Molecular-dynamics study of energy flow and the Kapitza conductance across an interface with imperfection formed by two dielectric thin films. Physical Review B, 67, 1–8.

    Article  Google Scholar 

  • Waldrop, M. (2016). The chips are down for Moore’s law. Natures News, 530, 144–147.

    Article  Google Scholar 

  • Wilson, R., Apgar, B., Hsieh, W.-P., Martin, L., & Cahill, D. (2015). Thermal conductance of strongly bonded metal-oxide interfaces. Physical Review B, 11, 1–7.

    Google Scholar 

  • Young, D., & Maris, H. (1989). Lattice-dynamics calculation of the Kapitza resistance between fcc lattices. Physical Review B, 40, 3685–3693.

    Article  Google Scholar 

  • Yovanovich, M. (2005). Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Transactions on Components and Packaging Technologies, 28, 182–206.

    Article  Google Scholar 

  • Yu, C., Shi, L., Yao, Z., Li, D., & Majumdar, A. (2005). Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Letters, 9, 1842–1846.

    Article  Google Scholar 

  • Zhirnov, V., Cavin, R., Hutchby, J., & Bourianoff, G. (2003). Limits to binary logic switch scaling—A gedanken model. Proceedings of the IEEE, 91, 1934–1939.

    Article  Google Scholar 

  • Zhou, Y., Zhang, X., & Hu, M. (2016). An excellent candidate for largely reducing interfacial thermal resistance: A nano-confined mass graded interface. Nanoscale, 8(4), 1994–2002.

    Article  Google Scholar 

  • Ziman, J. (1967). The thermal properties of materials. Scientific American, 217, 181–187.

    Article  Google Scholar 

  • Ziman, J. (2001). Electrons and phonons: The theory of transport phenomena in solids. Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela M. Norris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Norris, P.M., Larkin, L.S. (2020). Engineering Interfaces at the Nanoscale. In: Norris, P., Friedersdorf, L. (eds) Women in Nanotechnology. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-030-19951-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19951-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19950-0

  • Online ISBN: 978-3-030-19951-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics